Department of Mathematical Sciences	$4^{\text {th }}$ Floor French Hall West	
PO Box 210025	Phone	$(513) 556-4050$
Cincinnati OH 45221-0025	Fax	$(513) 556-3417$

QUALIFYING EXAM PRACTICE PROBLEMS

\mathbb{R} is the field of real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space
Proofs, or counter examples, are required for all problems.
(1) Let (X, d) be a metric space and S a subset of X. State the logical implications that hold among the following conditions. (No proofs are required here, but where possible, provide 'names' of appropriate theorems.)
(a) S is bounded
(b) S is closed
(c) S is compact
(d) S is complete
(e) S is sequentially compact
(f) S is totally bounded

What changes if $X=\mathbb{R}^{n}$ and $d(x, y)=\|x-y\|$?
(2) Let $x_{n}:=(-1)^{n} \frac{\sqrt{n^{2}+1}}{n+1}$. Is $\left(x_{n}\right)_{1}^{\infty}$ a Cauchy sequence?
(3) Determine $\lim \sup _{n \rightarrow \infty} x_{n}$ and $\lim \inf _{n \rightarrow \infty} x_{n}$ if $x_{n}:=(-1)^{n}+(-1)^{n} \frac{3^{n}}{4^{n-2}}$.
(4) Prove that a sequence $\left(a_{n}\right)_{1}^{\infty}$ of real numbers that has no Cauchy subsequences must be unbounded.
(5) Suppose $[0, \infty) \xrightarrow{f} \mathbb{R}$ is continuous and satisfies $\lim _{x \rightarrow \infty} f(x)=0$. Is f uniformly continuous on $[0, \infty)$? Why, or why not?
(6) Suppose $\mathbb{R} \xrightarrow{f} \mathbb{R}$ is uniformly continuous. For each $n \in \mathbb{N}$, define

$$
f_{n}(x):=f\left(x+\frac{1}{n}\right) .
$$

Prove that $\left(f_{n}\right)_{1}^{\infty}$ converges uniformly, and find the limit function.
(7) Determine whether or not the following series converges.

$$
1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}+\frac{1}{13}-\cdots
$$

(8) Find the interval of convergence for the series $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}(x-2)^{n}$.
(9) Suppose that $\mathbb{R} \xrightarrow{f} \mathbb{R}$ is differentiable at the point a. Prove that

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h} .
$$

(10) Suppose that $\mathbb{R} \xrightarrow{f} \mathbb{R}$ is differentiable with $f^{\prime}(x) \neq 0$ for all $x \in \mathbb{R}$. Prove that f is injective on all of \mathbb{R}.
(11) Let $\left(a_{n}\right)_{1}^{\infty}$ be an increasing sequence in (0,1) with limit 1 . Define $[0,1] \xrightarrow{f} \mathbb{R}$ by

$$
f(x):= \begin{cases}1 & \text { if } x=a_{n} \text { for some } n \in \mathbf{N} \\ 0 & \text { otherwise }\end{cases}
$$

Is f Riemann integrable? Why, or why not?
(12) Let $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ be defined by

$$
f(x, y):= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { when }(x, y) \neq(0,0) \\ 0 & \text { when }(x, y)=(0,0)\end{cases}
$$

Determine where f is differentiable.
(13) Let $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ be defined by

$$
f(x, y):= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}} & \text { when }(x, y) \neq(0,0) \\ 0 & \text { when }(x, y)=(0,0)\end{cases}
$$

(a) Let $u:=(a, b)$ with $a \neq 0$. Show that the directional derivative $D_{u} f(0,0)$ exists and find its value.
(b) Show that f is not differentiable at $(0,0)$. (Hint: Is it continuous there?)
(14) Suppose that $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ is a function with the property that for all $x \in \mathbb{R}^{2},|f(x)| \leq|x|^{2}$. Prove that f is differentiable at the origin.
(15) (a) Let $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ be defined by $f(x, y):=x+y$. Prove that f is differentiable on \mathbb{R}^{2} and that for all $(a, b),(x, y) \in \mathbb{R}^{2}, D f(a, b)(x, y)=x+y$.
(b) Suppose $\mathbb{R}^{2} \xrightarrow{\varphi} \mathbb{R}$ is defined by

$$
\varphi(x, y):=\int_{0}^{x+y} g(t) d t \quad \text { where } \mathbb{R} \xrightarrow{g} \mathbb{R} \text { is continuous }
$$

Prove that φ is differentiable and find the derivative.
(16) Let V be a vector space on which an inner product is defined. Define the norm for $v \in V$ by $\|v\|:=\sqrt{\langle v, v\rangle}$. Show that the norm satisfies the triangle inequality $\|v+w\| \leq\|v\|+\|w\|$ for any $v, w \in V$.
(17) Let A be an invertible symmetric operator on a vector space V. Use the inner product definition of a symmetric operator to show that A^{-1} is also a symmetric operator.
(18) Take $A \in \operatorname{Mat}_{m \times m}(K)$.
(a) A square matrix A is nilpotent if $A^{n}=0$ for some positive integer n. Show that if A is nilpotent then $I-A$ is invertible.
(b) Show that if $A^{3}-A+I=0$ then A is invertible.
(19) (a) Let $T: V \rightarrow W$ be a linear mapping between two vector spaces. Show $T(0)=0$.
(b) Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear mapping. Suppose

$$
L([3,1])=[1,2] \quad \text { and } \quad L([-1,0])=[1,1] .
$$

Compute $L([1,0])$ and $L([0,1])$.
(c) Give an example of a linear mapping that is not injective on its image.
(20) Let V be a finite-dimensional vector space over \mathbb{R} or \mathbb{C} with an inner product. Let A be a linear map. Show that

$$
\operatorname{Im} A^{\top}=(\operatorname{ker} A)^{\perp},
$$

that is, show the image of A^{\top} is the orthogonal complement of the kernel of A.
(21) Let $J_{r s}$ be the $n \times n$ matrix whose $r s$-entry is c and all other entries are 0 . Set $E_{r s}:=I+J_{r s}$.
(a) Compute $\operatorname{det} E_{r s}$. Note there are two distinct cases.
(b) Let A be an $n \times n$ matrix. What is the effect of multiplying A on the left by $E_{r s}$? What is the effect of multiplying A on the right by $E_{r s}$?
(22) Compute the determinant of an arbitrary upper-triangular $n \times n$ matrix A.
(23) Let $A=\left(a_{i j}\right) \in \operatorname{Mat}_{n \times n}(K)$ be such that

$$
\sum_{j=1}^{n} a_{i j}=c, \quad i=1, \ldots, n
$$

for some $c \in K$. Show that c is an eigenvalue for A.
(24) Consider $A \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$. Does A necessarily have a real eigenvalue? If so, prove it. If not, give a counterexample.
(25) Give a 3×3 matrix with real entries whose eigenspace is exactly two-dimensional. Find a basis of generalized eigenvectors for your matrix.

