Complex Analysis Prelim Exam
 UC Department of Math
 August 2023

1. Show that every entire function is given by a power series that converges locally uniformly on the complex plane. By an entire function we mean a function that is complex analytic on the entire plane.
2. For a given integer $j \in \mathbb{Z}$, find all entire functions f that satisfy $|f(z)| \leq\left|e^{z}\right||z-i|^{j}$ for each complex number $z \neq i+1$.
3. In this question, Ω is a simply connected planar domain that is not the entire complex plane, and $z_{0}, z_{1} \in \Omega$. Show that if f and g are two conformal maps of Ω that map z_{0} to z_{1}, then $f=g$.
4. Compute the exact value of the integral $\int_{0}^{\infty} \frac{1}{x^{4 n}+1} d x$ for each positive integer n.
5. Let D be the open disk $D=\{z:|z-c|<\rho\}$, where $c, \rho \in \mathbb{R}$ with $0<\rho<c$ and let H denote the left half-plane $H=\{z: \operatorname{Re}(z)<0\}$. Find the image of the union $D \cup H$ under the mapping

$$
z \rightarrow \frac{z-a}{z+a}
$$

where $a=\sqrt{c^{2}-\rho^{2}}>0$.

