Linear Models Preliminary Exam
August 2023
There are 3 problems with a total of 100 points.

Show all of your work.

1. (30 points) Let X; and X9 be n x p; and n X po matrices of predictors whose columns are
linearly independent to each other. We consider the linear regression model below:

y=X106; + X208, +¢€,

where 3; and B, are pi- and po- dimensional vectors, respectively, and € ~ N (0, o°I).
(a) Express the ordinary least square estimator for 3 = (gl) using X1, X, and y.
2
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be the ordinary least square estimator found above in (a). Find the explicit forms of
Gi1, G2, G, and Gao.

(c) Based on the results in part (b), show that 8 = (X{X;) Xy when X; X5 = 0.

(b) Let

2. (35 points) Suppose that data {(x;;,yi;) :4=1,...,n,5 =1,...,p} can be modeled as having
a common slope v and possibly different intercepts 6; using the linear model,

Yij = 0i + yaij + €ij,
where {¢;;} are independently and identically distributed N (0, ¢%) random variables. Assume
that no vector (z1,...,24p), for i =1,...,n, is proportional to the vector of 1s.

(a) Determine the ordinary least squares estimator of (61, ...,60,,7)’.

(b) Give an explicit expression for the size « likelihood-ratio test of the hypothesis,
Hy:00=---=80, =0 versus H, : not Hy,

(c) Compute the power of the test that you derived in part (b). (There are several ways
of defining the non-centrality parameter for the test. Pick any one of these, and use it
consistently in this part.) Show that the power is independent of .

(d) State the power of the test when 6; =--- =6, =0 and v = 2.



3. (35 points) For a linear model given by
Yi = Bo + Brxi1 + Baziz + -+ Bpwip + €,
with E(e;) = 0 and Var(e;) = 02 > 0 for i = 1,...,n, consider a centered model given by
yi = o+ Bi(xin — Z1) + Po(zio — T2) + - + Bp(zip — Tp) + €&
with z; = %Z?:lxij forj=1,...,p.

(a) Let X be an n x p matrix of the predictors, i.e.,
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The centered model can be written as

y=1[ X <g>—|—e

where y = (y1,...,Yn), J is a p-dimensional column vector whose elements are all 1s,
B=(B,...,0p) and € = (e1,...,€,)". Express X, using X, I,,, and J,, where I,, is an
n by n identity matrix and J, is an n by n matrix of 1s.

(b) Show that the ordinary least squares estimators for o and 3 are given by 7 and (X.X.) ! X y.

(c) Now assume that the covariance matrix of € is given as X = o2[(1 — p)I + pJ] with
0 < p < 1. Show that the generalized least squares estimator for a and 3 are the same
as the ordinary least squares estimator found in part (b).

Hint: Use the fact that the inverse of V' = (1 — p)I + pJ can be written as V1 =
5 (1= et )
(1-p) 1+(n—1)p% J°




