In this exam \mathbb{R} denotes the field of all real numbers; \mathbb{R}^d is the *d*-dimensional Euclidean space with the usual norm $||x|| = \left(\sum_{k=1}^d x_k^2\right)^{1/2}$; C[0,1] is the space of continuous functions on the interval [0,1]. Proofs or counterexamples are required for all problems.

- 1. If f is continuous on [a, b], if a < c < d < b, and M = f(c) + f(d), prove that there exists a number ξ between a and b such that $M = 2f(\xi)$.
- 2. Prove that if a set C in \mathbb{R}^d is connected and a point $x \in \mathbb{R}^d$ is a cluster point of C, then the set $C \cup \{x\}$ is connected.
- 3. Prove the Monotone Convergence Theorem for Sequences as stated below. Note: For the "only if" part, do not simply state that a convergent sequence is bounded; prove it.

Let $\{x_n\}$ be a monotone increasing sequence of real numbers. Then $\{x_n\}$ is convergent if and only if it is bounded.

- 4. Prove or give a counterexample: Let f and g be two functions on the interval [-1,1]. If the product fg is Riemann integrable on [-1,1], then at least one of f and g must be Riemann integrable on [-1,1]. Carefully support all your statements.
- 5. Let $X = \{f \in C[0,1] : f(0) = 0\}$. You may assume that X is a vector space over \mathbb{R} . For each $f \in X$, let $(Tf)(x) = \int_0^x f(y) \, dy$, $x \in [0,1]$.
 - (a) Show that T is a linear map from X to itself.
 - (b) Show that T is injective.
 - (c) Show that T is not surjective.
- 6. Let V be a vector space, and $T: V \to V$ a linear map. Suppose there exist linearly independent vectors v_1, v_2, v_3 such that $Tv_1 = v_2, Tv_2 = v_3$, and $Tv_3 = v_2$. Show that $\lambda = 0, \lambda = 1$, and $\lambda = -1$ are eigenvalues of T. (Hint: consider appropriate linear combinations of v_1, v_2 , and v_3 as possible eigenvectors.)
- 7. Let ℓ^2 be the set of all real sequences $\{a_n\}_1^\infty$ such that $\sum_{n=1}^\infty |a_n|^2 < \infty$. Prove that ℓ^2 is a vector space over \mathbb{R} and that $\langle \{a_n\}, \{b_n\} \rangle := \sum_{n=1}^\infty a_n b_n$ defines an inner product on ℓ^2 .
- 8. Let V be a finite-dimensional vector space and T a linear map from V to itself. Suppose range $(T 2I) \subseteq \text{null } (T 3I)$. Show that T is invertible.