Statistics Preliminary Exam August 2023

There are 7 problems with a total of 200 points. Show all of your work.

- 1. (25 points) Let a random variable X have the binomial distribution b(p, n), and let the function g(p) defined as g(p) = p(1-p).
 - (a) Show that the UMVUE of g(p) is $\hat{\delta} = X(n-X)/n(n-1)$. (UMVUE: uniformly minimum variance unbiased estimator).
 - (b) Determine the limiting distribution of $\sqrt{n}(\hat{\delta} g(p))$ and $n(\hat{\delta} g(p))$ when $g'(p) \neq 0$ and g'(p) = 0, respectively.
- 2. (25 points) Let the random variable X follow the *inverse Gaussian* distribution $I(\mu, \tau)$ with density

$$\sqrt{\frac{\tau}{2\pi x^3}} \exp\left(-\frac{\tau}{2x\mu^2}(x-\mu)^2\right), \quad x > 0, \ \tau, \mu > 0.$$

- (a) Find the moment generating function of X.
- (b) Show that $V = \frac{\tau}{X\mu^2}(X-\mu)^2 \sim \chi_1^2$

Let X_1, \ldots, X_n be a random sample from $I(\mu, \tau)$.

- (c) Show that $\overline{X} = \sum_{i=1}^{n} X_i / n \sim I(\mu, n\tau)$.
- (d) Show that there exists a UMP test for testing $H_0: \mu \leq \mu_0$ versus. $H_1: \mu > \mu_0$ when τ is known. (UMP: uniformly most powerful).
- 3. (25 points) Let X_1, X_2, \ldots, X_m be a random sample from an exponential distribution with mean λ , and Y_1, Y_2, \ldots, Y_n be a random sample form an exponential distribution with mean μ , and assume that the two samples are independent.
 - (a) Find the LRT statistic, T, for testing the null hypothesis $H_0: \lambda = \mu$ versus the alternative hypothesis $H_1: \lambda \neq \mu$. (LRT: Likelihood Ratio Test).
 - (b) Using a suitable one-to-one transformation of T, find the exact 5% critical region for the LRT in (a). Give the critical region in terms of the percentile(s) of a known distribution. Clearly identify the distribution and which percentiles(s), upper or lower.
- 4. (25 points) Let X_1, \ldots, X_n be a random sample from $U(\theta, \theta + 1)$, where $-\infty < \theta < \infty$ and it is unknown. Assume a prior distribution for θ given by the probability density function, for $-\infty < \theta < \infty$,

$$\pi(\theta) = \frac{1}{2}e^{-|\theta|} \; .$$

- (a) Find the posterior distribution of θ , given $(X_1 = x_1, \ldots, X_n = x_n)$, i.e., $\pi(\theta | x_1, \cdots, x_n)$.
- (b) Find the Bayes estimator of θ under the loss function, $L(\theta, \delta) = (\theta \delta)^2$.

5. (30 points) Let \mathbf{X}_1 and \mathbf{X}_2 be $n \times p_1$ and $n \times p_2$ matrices of predictors whose columns are linearly independent to each other. We consider the linear regression model below:

$$\boldsymbol{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon},$$

where β_1 and β_2 are p_1 - and p_2 - dimensional vectors, respectively, and $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$.

- (a) Express the ordinary least square estimator for $\boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{pmatrix}$ using $\mathbf{X}_1, \mathbf{X}_2$, and \boldsymbol{y} .
- (b) Let

$$\hat{oldsymbol{eta}} = egin{pmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \ \mathbf{G}_{21} & \mathbf{G}_{22} \end{pmatrix} egin{pmatrix} \mathbf{X}_1 oldsymbol{y} \ \mathbf{X}_2 oldsymbol{y} \end{pmatrix}$$

be the ordinary least square estimator found above in (a). Find the explicit forms of \mathbf{G}_{11} , \mathbf{G}_{12} , \mathbf{G}_{21} , and \mathbf{G}_{22} .

- (c) Based on the results in part (b), show that $\beta_1 = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1\mathbf{y}$ when $\mathbf{X}_1'\mathbf{X}_2 = \mathbf{0}$.
- 6. (35 points) Suppose that data $\{(x_{ij}, y_{ij}) : i = 1, ..., n, j = 1, ..., p\}$ can be modeled as having a common slope γ and possibly different intercepts θ_i using the linear model,

$$Y_{ij} = \theta_i + \gamma x_{ij} + \epsilon_{ij},$$

where $\{\epsilon_{ij}\}\$ are independently and identically distributed $N(0, \sigma^2)$ random variables. Assume that no vector (x_{i1}, \ldots, x_{ip}) , for $i = 1, \ldots, n$, is proportional to the vector of 1s.

- (a) Determine the ordinary least squares estimator of $(\theta_1, \ldots, \theta_n, \gamma)'$.
- (b) Give an explicit expression for the size α likelihood-ratio test of the hypothesis,

$$H_0: \theta_1 = \cdots = \theta_n = 0$$
 versus $H_a:$ not H_0

- (c) Compute the power of the test that you derived in part (b). (There are several ways of defining the non-centrality parameter for the test. Pick any one of these, and use it consistently in this part.) Show that the power is independent of γ .
- (d) State the power of the test when $\theta_1 = \cdots = \theta_n = 0$ and $\gamma = 2$.
- 7. (35 points) For a linear model given by

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i,$$

with $E(\epsilon_i) = 0$ and $Var(\epsilon_i) = \sigma^2 > 0$ for i = 1, ..., n, consider a centered model given by

$$y_i = \alpha + \beta_1(x_{i1} - \bar{x}_1) + \beta_2(x_{i2} - \bar{x}_2) + \dots + \beta_p(x_{ip} - \bar{x}_p) + \epsilon_i$$

with $\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$ for j = 1, ..., p.

(a) Let X be an $n \times p$ matrix of the predictors, i.e.,

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

The centered model can be written as

$$oldsymbol{y} = \left[oldsymbol{j} \,\, oldsymbol{X}_c
ight] egin{pmatrix} lpha \ oldsymbol{eta} \end{pmatrix} + oldsymbol{\epsilon}$$

where $\boldsymbol{y} = (y_1, \ldots, y_n)$, \boldsymbol{j} is a *p*-dimensional column vector whose elements are all 1s, $\boldsymbol{\beta} = (\beta_1, \ldots, \beta_p)'$ and $\boldsymbol{\epsilon} = (\epsilon_1, \ldots, \epsilon_n)'$. Express \boldsymbol{X}_c using \boldsymbol{X} , \boldsymbol{I}_n , and \boldsymbol{J}_n where \boldsymbol{I}_n is an *n* by *n* identity matrix and \boldsymbol{J}_n is an *n* by *n* matrix of 1s.

- (b) Show that the ordinary least squares estimators for α and β are given by \bar{y} and $(\mathbf{X}'_{c}\mathbf{X}_{c})^{-1}\mathbf{X}'_{c}\mathbf{y}$.
- (c) Now assume that the covariance matrix of $\boldsymbol{\epsilon}$ is given as $\boldsymbol{\Sigma} = \sigma^2[(1-\rho)\boldsymbol{I} + \rho\boldsymbol{J}]$ with $0 < \rho < 1$. Show that the generalized least squares estimator for α and $\boldsymbol{\beta}$ are the same as the ordinary least squares estimator found in part (b). Hint: Use the fact that the inverse of $\boldsymbol{V} = (1-\rho)\boldsymbol{I} + \rho\boldsymbol{J}$ can be written as $\boldsymbol{V}^{-1} = \frac{1}{(1-\rho)} \left(\boldsymbol{I} - \frac{\rho}{1+(n-1)\rho}\boldsymbol{J}\right)$.