Statistics Preliminary Exam
August 2023
There are 7 problems with a total of 200 points.

Show all of your work.

1. (25 points) Let a random variable X have the binomial distribution b(p,n), and let the
function g(p) defined as g(p) = p(1 — p).

(a) Show that the UMVUE of ¢(p) is 6 = X (n — X)/n(n —1).
(UMVUE: uniformly minimum variance unbiased estimator).

(b) Determine the limiting distribution of \/ﬁ(g —g(p)) and n(S — g(p)) when ¢(p) # 0 and
g (p) = 0, respectively.

2. (25 points) Let the random variable X follow the inverse Gaussian distribution I(u,7) with
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(a) Find the moment generating function of X.

(b) Show that V = XLMZ,(X —p)? ~ 3

density

Let Xi,..., X, be a random sample from I(u, 7).

(c) Show that X =Y | X;/n ~ I(u,nt).

(d) Show that there exists a UMP test for testing Hy : pu < uo versus. Hy : u > po when 7
is known. (UMP: uniformly most powerful).

3. (25 points) Let X1, Xs,...,X,, be a random sample from an exponential distribution with
mean A\, and Y7,Y5,...,Y, be a random sample form an exponential distribution with mean
1, and assume that the two samples are independent.

(a) Find the LRT statistic, T, for testing the null hypothesis Hp : A = p versus the alterna-
tive hypothesis H; : A # p. (LRT: Likelihood Ratio Test).

(b) Using a suitable one-to-one transformation of T, find the exact 5% critical region for the
LRT in (a). Give the critical region in terms of the percentile(s) of a known distribution.
Clearly identify the distribution and which percentiles(s), upper or lower.

4. (25 points) Let X,..., X, be a random sample from U (6,0 + 1), where —oo < 6 < oo and it
is unknown. Assume a prior distribution for 6 given by the probability density function, for
—00 < 6 < o0,

7(6) = 5o .

(a) Find the posterior distribution of 6, given (X1 = x1,...,X,, = xy,), i.e., 7(0|z1, -, zy).
(b) Find the Bayes estimator of # under the loss function, L(#,4) = (8 — §)2.



5. (30 points) Let X; and Xo be n X p; and n x pa matrices of predictors whose columns are
linearly independent to each other. We consider the linear regression model below:

y=X106; + X208, +¢,

where 3; and 3, are p;- and pe- dimensional vectors, respectively, and € ~ N(0, 0I).
(a) Express the ordinary least square estimator for 3 = (gl> using X1, Xo, and y.
2
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be the ordinary least square estimator found above in (a). Find the explicit forms of
G11, Gi2, Go1, and Gae.

c) Based on the results in part (b), show that 8; = (X}X;) 'X;y when X/ X, = 0.
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(b) Let

6. (35 points) Suppose that data {(x;;,yi;) :i=1,...,n,5 =1,...,p} can be modeled as having
a common slope v and possibly different intercepts 6; using the linear model,

Yij = 0i + v + €,

where {¢;;} are independently and identically distributed N (0, 0?) random variables. Assume
that no vector (z1,...,24), for i =1,...,n, is proportional to the vector of 1s.

(a) Determine the ordinary least squares estimator of (61,...,0,,7)".

(b) Give an explicit expression for the size « likelihood-ratio test of the hypothesis,
Hy:00=---=80, =0 versus H, : not Hy

(¢c) Compute the power of the test that you derived in part (b). (There are several ways
of defining the non-centrality parameter for the test. Pick any one of these, and use it
consistently in this part.) Show that the power is independent of ~.

(d) State the power of the test when 6; = --- =6, =0 and v = 2.

7. (35 points) For a linear model given by
Yi = Bo + Brxs1 + Baziz + -+ Bpxip + €,
with E(e;) = 0 and Var(e;) = 02 > 0 for i = 1,...,n, consider a centered model given by
yi = a+ fi(xin — 1) + Pa(zie — T2) + - - + Bplxip — Tp) + €&

Witha_cj:%E?:lxij forj=1,...,p.



(a)

Let X be an n X p matrix of the predictors, i.e.,
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The centered model can be written as

y=1[j X <g>+€

where y = (y1,...,Yn), J is a p-dimensional column vector whose elements are all 1s,
B=(P1,...,0p) and € = (e1,...,€,)". Express X, using X, I,,, and J,, where I, is an
n by n identity matrix and J, is an n by n matrix of 1s.

Show that the ordinary least squares estimators for o and 3 are given by 7 and (X.X.) ' X y.

Now assume that the covariance matrix of € is given as ¥ = o?[(1 — p)I + pJ] with
0 < p < 1. Show that the generalized least squares estimator for a and 3 are the same
as the ordinary least squares estimator found in part (b).

Hint: Use the fact that the inverse of V' = (1 — p)I + pJ can be written as V™1 =
5 (1= et )
(1-p) 1+(n=1)p% J°




