Statistical Methods Preliminary Exam
 August 2023

There are 4 problems with a total of 100 points.
Show all of your work.

1. (25 points) Let a random variable X have the binomial distribution $b(p, n)$, and let the function $g(p)$ defined as $g(p)=p(1-p)$.
(a) Show that the UMVUE of $g(p)$ is $\hat{\delta}=X(n-X) / n(n-1)$.
(UMVUE: uniformly minimum variance unbiased estimator).
(b) Determine the limiting distribution of $\sqrt{n}(\hat{\delta}-g(p))$ and $n(\hat{\delta}-g(p))$ when $g^{\prime}(p) \neq 0$ and $g^{\prime}(p)=0$, respectively.
2. (25 points) Let the random variable X follow the inverse Gaussian distribution $I(\mu, \tau)$ with density

$$
\sqrt{\frac{\tau}{2 \pi x^{3}}} \exp \left(-\frac{\tau}{2 x \mu^{2}}(x-\mu)^{2}\right), \quad x>0, \tau, \mu>0 .
$$

(a) Find the moment generating function of X.
(b) Show that $V=\frac{\tau}{X \mu^{2}}(X-\mu)^{2} \sim \chi_{1}^{2}$

Let X_{1}, \ldots, X_{n} be a random sample from $I(\mu, \tau)$.
(c) Show that $\bar{X}=\sum_{i=1}^{n} X_{i} / n \sim I(\mu, n \tau)$.
(d) Show that there exists a UMP test for testing $H_{0}: \mu \leq \mu_{0}$ versus. $H_{1}: \mu>\mu_{0}$ when τ is known. (UMP: uniformly most powerful).
3. (25 points) Let $X_{1}, X_{2}, \ldots, X_{m}$ be a random sample from an exponential distribution with mean λ, and $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a random sample form an exponential distribution with mean μ, and assume that the two samples are independent.
(a) Find the LRT statistic, T, for testing the null hypothesis $H_{0}: \lambda=\mu$ versus the alternative hypothesis $H_{1}: \lambda \neq \mu$. (LRT: Likelihood Ratio Test).
(b) Using a suitable one-to-one transformation of T, find the exact 5% critical region for the LRT in (a). Give the critical region in terms of the percentile(s) of a known distribution. Clearly identify the distribution and which percentiles(s), upper or lower.
4. (25 points) Let X_{1}, \ldots, X_{n} be a random sample from $U(\theta, \theta+1$), where $-\infty<\theta<\infty$ and it is unknown. Assume a prior distribution for θ given by the probability density function, for $-\infty<\theta<\infty$,

$$
\pi(\theta)=\frac{1}{2} e^{-|\theta|} .
$$

(a) Find the posterior distribution of θ, given $\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$, i.e., $\pi\left(\theta \mid x_{1}, \cdots, x_{n}\right)$.
(b) Find the Bayes estimator of θ under the loss function, $L(\theta, \delta)=(\theta-\delta)^{2}$.

