Statistical Methods Preliminary Exam August 2023

There are 4 problems with a total of 100 points. Show all of your work.

- 1. (25 points) Let a random variable X have the binomial distribution b(p, n), and let the function g(p) defined as g(p) = p(1-p).
 - (a) Show that the UMVUE of g(p) is $\hat{\delta} = X(n-X)/n(n-1)$. (UMVUE: uniformly minimum variance unbiased estimator).
 - (b) Determine the limiting distribution of $\sqrt{n}(\hat{\delta} g(p))$ and $n(\hat{\delta} g(p))$ when $g'(p) \neq 0$ and g'(p) = 0, respectively.
- 2. (25 points) Let the random variable X follow the *inverse Gaussian* distribution $I(\mu, \tau)$ with density

$$\sqrt{\frac{\tau}{2\pi x^3}} \exp\left(-\frac{\tau}{2x\mu^2}(x-\mu)^2\right), \quad x > 0, \ \tau, \mu > 0.$$

- (a) Find the moment generating function of X.
- (b) Show that $V = \frac{\tau}{X\mu^2}(X-\mu)^2 \sim \chi_1^2$

Let X_1, \ldots, X_n be a random sample from $I(\mu, \tau)$.

- (c) Show that $\overline{X} = \sum_{i=1}^{n} X_i / n \sim I(\mu, n\tau)$.
- (d) Show that there exists a UMP test for testing $H_0: \mu \leq \mu_0$ versus. $H_1: \mu > \mu_0$ when τ is known. (UMP: uniformly most powerful).
- 3. (25 points) Let X_1, X_2, \ldots, X_m be a random sample from an exponential distribution with mean λ , and Y_1, Y_2, \ldots, Y_n be a random sample form an exponential distribution with mean μ , and assume that the two samples are independent.
 - (a) Find the LRT statistic, T, for testing the null hypothesis $H_0: \lambda = \mu$ versus the alternative hypothesis $H_1: \lambda \neq \mu$. (LRT: Likelihood Ratio Test).
 - (b) Using a suitable one-to-one transformation of T, find the exact 5% critical region for the LRT in (a). Give the critical region in terms of the percentile(s) of a known distribution. Clearly identify the distribution and which percentiles(s), upper or lower.
- 4. (25 points) Let X_1, \ldots, X_n be a random sample from $U(\theta, \theta + 1)$, where $-\infty < \theta < \infty$ and it is unknown. Assume a prior distribution for θ given by the probability density function, for $-\infty < \theta < \infty$,

$$\pi(\theta) = \frac{1}{2}e^{-|\theta|} \; .$$

- (a) Find the posterior distribution of θ , given $(X_1 = x_1, \ldots, X_n = x_n)$, i.e., $\pi(\theta | x_1, \cdots, x_n)$.
- (b) Find the Bayes estimator of θ under the loss function, $L(\theta, \delta) = (\theta \delta)^2$.