PRELIMINARY EXAM

Complex Analysis

Please start each problem on a new page, and arrange your work in order when submitting. Please choose 5 problems out of the 6 problems on the exam. Only 5 problems will be graded.

In this exam $\mathbb C$ denotes the complex plane.

- 1. Calculate the Laurent series of the function $f(z) = \frac{1}{(z+1)(z-2)}$ that is convergent in the annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}.$
- 2. Let \mathbb{D} denote the open unit disk. Show that there is no function f that is holomorphic in \mathbb{D} and extends continuously to the boundary $\partial \mathbb{D}$ such that f(z) = 1/z for $z \in \partial \mathbb{D}$.
- 3. Use the Residue Theorem to compute $\int_{-\infty}^{+\infty} \frac{1}{1+x^4} \, \mathrm{d}x.$
- 4. Find the number of zeros (counting with multiplicity) of the function $f(z) = z^6 5z^2 + \sin(z)$ that lie in the open annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}$.
- 5. Let \mathbb{D} denote the open unit disk. Let $\varphi \colon \mathbb{D} \to \mathbb{H}$ be holomorphic, where $\mathbb{H} = \{z \in \mathbb{D} \colon \operatorname{Re}(z) > 0\}$. Suppose that $\varphi(0) = 1$ and that $\varphi'(0) = 2i$. Prove that φ is a conformal map (that is it is bijective with a holomorphic inverse).
- 6. Let f be a holomorphic function on $\Omega = \{z \in \mathbb{C} : |z 2| \leq 1\}$ such that $|f(z)| \leq 2|z|^2$ for $z \in \partial \Omega$. Prove that $|f(2)| \leq 8$.