Abstract Linear Algebra Qualifying Exam

August 21, 2024

- 1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map such that T(2,1) = (5,4) and T(1,1) = (3,3).
 - (a) If x = (3, -2), find Tx.

(b) Find the eigenvalues of T and the corresponding eigenvectors.

- 2. Let V, W be finite-dimensional vector spaces, with linear maps $T: V \to W$ and $S: W \to V$. Suppose $ST: V \to V$ is invertible. Show that dim $W \ge \dim V$.
- 3. Let U, V, W be subspaces of a vector space X. Suppose that

$$(U+V) \cap W = 0$$
, and $U \cap (V+W) = 0$.

Show that $V \cap (U+W) = 0$, and that U + V + W is a direct sum.

4. (a) Prove that for $T : \mathbb{R}^m \to \mathbb{R}^n$ linear, there exists a constant c > 0, depending only on T, such that $||Tx|| \le c||x||$ for any $x \in \mathbb{R}^m$.

(b) Suppose that $x_1, x_2 \in \mathbb{R}^n$ with $||x_1|| < ||x_2||$, and that $S_1 : \mathbb{R}^n \to \mathbb{R}, S_2 : \mathbb{R}^n \to \mathbb{R}^n$ are linear maps, where S_2 is in addition invertible. Prove that there exists a constant c > 0, depending on S_1, S_2 only, such that $|S_1x_1| < c||S_2x_2||$.

- 5. Let V be a finite-dimensional vector space over \mathbb{R} equipped with an inner product, and let $T: V \to V$ be linear.
 - (a) State what it means for T to be *self-adjoint*.

(b) Show that, if T is self-adjoint, then the eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

(c) Show that, if T is self-adjoint, then all eigenvalues of T are real.