1. Let $\left(X_{n}\right)_{n=1}^{\infty}$ be a sequence of random variables which converges to 0 in probability as $n \rightarrow \infty$.
(a) Let $M>0$ be a fixed number. Show that

$$
\lim _{n \rightarrow \infty} E\left[\left|X_{n}\right| \mathbf{1}_{\left|X_{n}\right| \leq M}\right]=0
$$

(b) Show that, if there exists a constant $C>0$ such that $E\left[\left|X_{n}\right|^{\alpha}\right] \leq C$ for all $n \geq 1$, then we have $\lim _{n \rightarrow \infty} E\left[\left|X_{n}\right|\right]=0$.
2. Let $\left(Y_{k}\right)_{k=1}^{\infty}$ be a sequence of independent random variables with

$$
P\left(Y_{k}=1+\sqrt{k}\right)=P\left(Y_{k}=1-\sqrt{k}\right)=\frac{1}{2}, k \in \mathbb{N}
$$

(a) Compute $E\left[Y_{k}\right]$ and $\operatorname{Var}\left(Y_{k}\right)$.
(b) Show that there exists two sequences of constants $\left(a_{n}\right),\left(b_{n}\right)$ such that, as $n \rightarrow \infty$,

$$
\frac{Y_{1}+\ldots+Y_{n}-a_{n}}{b_{n}}
$$

converges in distribution to a standard normal random variable.
3. Let $\left(X_{k}\right)_{k=1}^{\infty}$ be i.i.d. random variables with probability density function

$$
f(x)=\left\{\begin{array}{lr}
2 x^{-3} & \text { when } x \geq 1 \\
0 & \text { when } x<1
\end{array}\right.
$$

(a) Prove that X_{n} / \sqrt{n} converges to 0 in probability as $n \rightarrow \infty$.
(b) Prove that X_{n} / \sqrt{n} does not converge to 0 almost surely as $n \rightarrow \infty$.
4. Let $\left(X_{k}\right)_{k=1}^{\infty}$ be the same i.i.d. sequence of random variables as in Problem 3. Let $M_{n}=\max _{k=1, \ldots, n} X_{k}$ denote the maximum of X_{1}, \ldots, X_{n}.
Prove that M_{n} / \sqrt{n} converges in distribution to a random variable Z, and identify the distribution of Z by finding its probability density function.

