Preliminary Examination: Linear Models

Q1 counts for 30 points; Q2, 35 points; and Q3, 35 points.
Answer questions with showing all of your work.

1. (30 points) Let \mathbf{X}_{1} and \mathbf{X}_{2} be $n \times p_{1}$ and $n \times p_{2}$ be matrices of predictors whose columns are linearly independent to each other. We consider the linear regression model below:

$$
\boldsymbol{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\epsilon}
$$

where $\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$ are $p_{1^{-}}$and $p_{2^{-}}$dimensional vectors, respectively, and $\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.
(a) Express the ordinary least square estimator for $\boldsymbol{\beta}=\binom{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{2}}$ using $\mathbf{X}_{1}, \mathbf{X}_{2}$, and \boldsymbol{y}.
(b) Let

$$
\hat{\boldsymbol{\beta}}=\left(\begin{array}{ll}
\mathbf{G}_{11} & \mathbf{G}_{12} \\
\mathbf{G}_{21} & \mathbf{G}_{22}
\end{array}\right)\binom{\mathbf{X}_{1} \boldsymbol{y}}{\mathbf{X}_{2} \boldsymbol{y}}
$$

be the ordinary least square estimator found above in (a). Find the explicit forms of $\mathbf{G}_{11}, \mathbf{G}_{12}, \mathbf{G}_{21}$, and \mathbf{G}_{22}.
(c) Based on the results in part (b), show that $\boldsymbol{\beta}_{1}=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1} \boldsymbol{y}$ when $\mathbf{X}_{1}^{\prime} \mathbf{X}_{2}=\mathbf{0}$.
2. (35 points) Consider the following linear model:

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}, \boldsymbol{\epsilon} \sim N\left(0, \sigma^{2} \mathbf{I}_{n}\right)
$$

where \mathbf{X} is a $n \times p$ full rank matrix $(n>p), \boldsymbol{\beta}$ is a $(p+1)$-dimensional vector, and $\sigma^{2}>0$ is the variance of the error term. For a $k \times(p+1)$ matrix \mathbf{C}, consider the following hypotheses:

$$
\mathrm{H}_{0}: \mathbf{C} \boldsymbol{\beta}=\mathbf{0} \text { v.s. } \mathrm{H}_{1}: \mathbf{C} \boldsymbol{\beta} \neq \mathbf{0}
$$

(a) Find the F statistics for testing the hypotheses and its distribution under the null hypothesis.
(b) Show that the t-test for individual coefficient is a special case of the hypothesis test in the previous part.
Hint: Define the suitable \mathbf{C} that leads to the t-test for an individual coefficient and find the sampling distribution of the test statistic.
(c) An estimator under the null hypothesis is given by

$$
\hat{\boldsymbol{\beta}}_{C}=\hat{\boldsymbol{\beta}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\left[\mathbf{C X}^{\prime} \mathbf{X} \mathbf{C}^{\prime}\right] \mathbf{C} \hat{\boldsymbol{\beta}},
$$

where $\hat{\boldsymbol{\beta}}$ is the OLS estimator. Find the expected value and variance of $\hat{\boldsymbol{\beta}}_{C}$ under the alternative hypothesis.
(d) Under the null hypothesis, between $\hat{\boldsymbol{\beta}}_{C}$ and $\hat{\boldsymbol{\beta}}$, which estimator should be preferred? Provide justification.
3. (35 points) Consider the one-way ANOVA model $y_{i j}=\mu+\tau_{i}+\varepsilon_{i j}$ for $i=1,2,3$ and $n_{1}=2, n_{2}=2, n_{3}=1$ where $E\left(\varepsilon_{i j}\right)=0, V\left(\varepsilon_{i j}\right)=\sigma^{2}$, and $\varepsilon_{i j}$ are independent each other for all i and j.
(a) Show that $\mu+\tau_{1}, \mu+\tau_{2}$ and $\mu+\tau_{3}$ are estimable functions of $\boldsymbol{\beta}=\left(\mu, \tau_{1}, \tau_{2}, \tau_{3}\right)^{\prime}$.
(b) Show that $\sum_{i=1}^{3} c_{i} \tau_{i}$ is estimable if and only if $\sum_{i=1}^{3} c_{i}=0$.
(c) Show that \bar{y}_{i}. is the BLUE (best linear unbiased estimator) of $\mu+\tau_{i}$ for $i=1,2,3$ by using the Gauss-Markov theorem with finding an LSE (least square estimator) $\boldsymbol{\beta}^{0}$ and a g-inverse $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-}$.
(d) Find the $100(1-\alpha) \%$ marginal confidence interval for $\tau_{1}-\tau_{2}$ by using the equation with a g-inverse $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-}$. Write the degrees of freedom using the number.
(e) We now conduct the multiple hypothesis testing using the Scheffe intervals. Find the simultaneous confidence intervals for contrasts $\tau_{1}-\tau_{2}$ and $\tau_{1}-\tau_{3}$ under the significance level α.

