Linear Models

Preliminary Examination: Linear Models

Q1 counts for 30 points; Q2, 35 points; and Q3, 35 points.

Answer questions with showing all of your work.

1. (30 points) Let \mathbf{X}_1 and \mathbf{X}_2 be $n \times p_1$ and $n \times p_2$ be matrices of predictors whose columns are linearly independent to each other. We consider the linear regression model below:

$$\boldsymbol{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon},$$

where β_1 and β_2 are p_1 - and p_2 - dimensional vectors, respectively, and $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$.

- (a) Express the ordinary least square estimator for $\boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{pmatrix}$ using $\mathbf{X}_1, \mathbf{X}_2$, and \boldsymbol{y} .
- (b) Let

$$\hat{oldsymbol{eta}} = egin{pmatrix} \mathbf{G}_{11} & \mathbf{G}_{12} \ \mathbf{G}_{21} & \mathbf{G}_{22} \end{pmatrix} egin{pmatrix} \mathbf{X}_1 oldsymbol{y} \ \mathbf{X}_2 oldsymbol{y} \end{pmatrix}$$

be the ordinary least square estimator found above in (a). Find the explicit forms of \mathbf{G}_{11} , \mathbf{G}_{12} , \mathbf{G}_{21} , and \mathbf{G}_{22} .

- (c) Based on the results in part (b), show that $\boldsymbol{\beta}_1 = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1\boldsymbol{y}$ when $\mathbf{X}_1'\mathbf{X}_2 = \mathbf{0}$.
- 2. (35 points) Consider the following linear model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim N(0, \sigma^2 \mathbf{I}_n)$$

where **X** is a $n \times p$ full rank matrix (n > p), β is a (p + 1)-dimensional vector, and $\sigma^2 > 0$ is the variance of the error term. For a $k \times (p + 1)$ matrix **C**, consider the following hypotheses:

$$H_0: C\boldsymbol{\beta} = \mathbf{0}$$
 v.s. $H_1: C\boldsymbol{\beta} \neq \mathbf{0}$

- (a) Find the F statistics for testing the hypotheses and its distribution under the null hypothesis.
- (b) Show that the t-test for individual coefficient is a special case of the hypothesis test in the previous part.

Hint: Define the suitable \mathbf{C} that leads to the *t*-test for an individual coefficient and find the sampling distribution of the test statistic.

(c) An estimator under the null hypothesis is given by

$$\hat{\boldsymbol{\beta}}_{C} = \hat{\boldsymbol{\beta}} - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}' \left[\mathbf{C}\mathbf{X}'\mathbf{X}\mathbf{C}'\right]\mathbf{C}\hat{\boldsymbol{\beta}},$$

where $\hat{\boldsymbol{\beta}}$ is the OLS estimator. Find the expected value and variance of $\hat{\boldsymbol{\beta}}_{C}$ under the alternative hypothesis.

- (d) Under the null hypothesis, between $\hat{\beta}_C$ and $\hat{\beta}$, which estimator should be preferred? Provide justification.
- 3. (35 points) Consider the one-way ANOVA model $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$ for i = 1, 2, 3 and $n_1 = 2, n_2 = 2, n_3 = 1$ where $E(\varepsilon_{ij}) = 0, V(\varepsilon_{ij}) = \sigma^2$, and ε_{ij} are independent each other for all i and j.
 - (a) Show that $\mu + \tau_1$, $\mu + \tau_2$ and $\mu + \tau_3$ are estimable functions of $\beta = (\mu, \tau_1, \tau_2, \tau_3)'$.
 - (b) Show that $\sum_{i=1}^{3} c_i \tau_i$ is estimable if and only if $\sum_{i=1}^{3} c_i = 0$.
 - (c) Show that \bar{y}_i is the BLUE (best linear unbiased estimator) of $\mu + \tau_i$ for i = 1, 2, 3 by using the Gauss-Markov theorem with finding **an** LSE (least square estimator) $\boldsymbol{\beta}^0$ and **a** g-inverse $(\boldsymbol{X}'\boldsymbol{X})^-$.
 - (d) Find the $100(1-\alpha)\%$ marginal confidence interval for $\tau_1 \tau_2$ by using the equation with a *g*-inverse $(\mathbf{X}'\mathbf{X})^-$. Write the degrees of freedom using the number.
 - (e) We now conduct the multiple hypothesis testing using the Scheffe intervals. Find the simultaneous confidence intervals for contrasts $\tau_1 - \tau_2$ and $\tau_1 - \tau_3$ under the significance level α .