Real Analysis Preliminary Exam, January 2025

Time allowed: 2 hours 30 minutes.

This exam contains six problems; all problems have the same weight. The worst score will be dropped; only five solutions will be counted.

Notation: \mathbb{R} is the set of real numbers; *m* is the Lebesgue measure on \mathbb{R} ; *m*^{*} is the Lebesgue outer measure on \mathbb{R} .

- 1. Let $\{A_n\}_n$ be a sequence of Lebesgue measurable subsets of \mathbb{R} such that $A_{n+1} \subset A_n$ for each n. Let $A \subset \mathbb{R}$ be a set such that $A \subset A_n$ for all n and $\lim_{n \to \infty} m^*(A_n \setminus A) = 0$. Prove that A is Lebesgue measurable.
- 2. Let f be a Lebesgue integrable real-valued function on \mathbb{R} . Show that for any $\varepsilon > 0$ there exists a bounded interval I such that $\int_{\mathbb{R}\setminus I} |f| \, dm \leq \varepsilon$.
- 3. Let $\{f_n\}_n$ be a sequence of Lebesgue measurable functions that converges a.e. on \mathbb{R} . Assume that there exists a subsequence $\{n_j\}$ such that

$$\lim_{j \to \infty} \int_{\mathbb{R}} |f_{n_j}| \, dm = 0.$$

Show that f_n converges to 0 a.e. on \mathbb{R} .

- 4. (a) Give the definition of an absolutely continuous function on I = [0, 1].
 - (b) Let f be an absolutely continuous function on I and let $E \subset I$ be such that m(E) = 0. Show that m(f(E)) = 0.
- 5. Let f be a non-negative Lebesgue measurable function on [0,1]. Prove that f is Lebesgue integrable if and only if

$$\sum_{n=1}^{\infty} m\bigl(\{x\in[0,1]\colon f(x)>n\}\bigr)<\infty$$

(Hint: the Integral Test for series may be useful.)

- 6. Let (X, \mathcal{M}, μ_1) be a *finite* measure space, and f be a non-negative integrable function on this space. Let μ_2 be a measure on (X, \mathcal{M}) such that the Radon–Nikodym derivative $\frac{d\mu_2}{d\mu_1}$ is equal to f. Let g be a non-negative integrable function on (X, \mathcal{M}, μ_2) and for all $A \in \mathcal{M}$ let $\mu_3(A) = \int_A g \, d\mu_2 + 2\mu_2(A) + 3\mu_1(A)$.
 - (a) Prove that μ_3 is a finite measure on (X, \mathcal{M}) .
 - (b) Prove that $\mu_3 \ll \mu_1$ and find the Radon-Nikodym derivative $\frac{d\mu_3}{d\mu_1}$.