This exam contains six problems; all problems have the same weight. The worst score will be dropped; only five solutions will be counted. (An incorrect problem was deleted; best four out of five solutions were counted.) Proofs or counterexamples are required for all problems. Time allowed: 2 hours 30 minutes.

 \mathbb{R} denotes the real line; \mathbb{R}^d is the *d*-dimensional Euclidean space with the usual norm $||x|| = \left(\sum_{k=1}^d x_k^2\right)^{1/2}$.

- 1. Suppose that f_1 and f_2 are two differentiable functions on the interval [-1,1] such that $f_1(x) \leq f_2(x)$ for all $x \in [-1,1]$, $f_1(0) = f_2(0)$, and $f'_1(0) = f'_2(0)$. Show that if a function $f: [-1,1] \to \mathbb{R}$ is such that $f_1(x) \leq f(x) \leq f_2(x)$ for all $x \in [-1,1]$, then f is differentiable at 0.
- 2. This problem was deleted
- 3. (a) Give the definition of what it means for a sequence $\{a_n\}$ of real numbers to be a Cauchy sequence.
 - (b) Let $\{x_n\}$ be a sequence defined as follows:

$$x_1 = 1;$$
 $x_{n+1} = x_n + \frac{\cos(x_n)}{n^2}, n \ge 1.$

Prove that $\{x_n\}$ is a Cauchy sequence.

- 4. In this question, I is an interval in the real line.
 - (a) Give the definition of what it means for a function $f: I \to \mathbb{R}$ to be uniformly continuous on I.
 - (b) Prove that the function $f: [1, \infty) \to \mathbb{R}$ given by $f(x) = \sqrt{x}$ is uniformly continuous.
- 5. Let $f : [0,1] \to \mathbb{R}$ be a bounded function. Let f_+ be the function defined by $f_+(x) = \max\{f(x), 0\}$.
 - (a) Suppose that f is Riemann integrable. Is f_+ a Riemann integrable function? Prove or give a counterexample.
 - (b) Suppose that f_+ is Riemann integrable. Is f a Riemann integrable function? Prove or give a counterexample.
- 6. (a) Give the definition of what it means for a sequence of functions $\{f_n\}$ on an interval I to converge uniformly on I to a function f.
 - (b) Let $f_n(x) = (\sin(x))^n$ for $n \ge 1$. Find $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in [0, \pi/2]$.
 - (c) In part (b), does the sequence $\{f_n\}$ converge to f uniformly on $[0, \pi/2]$? Support your answer.