This exam contains six problems; all problems have the same weight. The worst score will be dropped; only five solutions will be counted. (An incorrect problem was deleted; best four out of five solutions were counted.) Proofs or counterexamples are required for all problems. Time allowed: 2 hours 30 minutes.
\mathbb{R} denotes the real line; \mathbb{R}^{d} is the d-dimensional Euclidean space with the usual norm $\|x\|=\left(\sum_{k=1}^{d} x_{k}^{2}\right)^{1 / 2}$.

1. Suppose that f_{1} and f_{2} are two differentiable functions on the interval $[-1,1]$ such that $f_{1}(x) \leq f_{2}(x)$ for all $x \in[-1,1], f_{1}(0)=f_{2}(0)$, and $f_{1}^{\prime}(0)=f_{2}^{\prime}(0)$. Show that if a function $f:[-1,1] \rightarrow \mathbb{R}$ is such that $f_{1}(x) \leq f(x) \leq f_{2}(x)$ for all $x \in[-1,1]$, then f is differentiable at 0 .
2. This problem was deleted
3. (a) Give the definition of what it means for a sequence $\left\{a_{n}\right\}$ of real numbers to be a Cauchy sequence.
(b) Let $\left\{x_{n}\right\}$ be a sequence defined as follows:

$$
x_{1}=1 ; \quad x_{n+1}=x_{n}+\frac{\cos \left(x_{n}\right)}{n^{2}}, n \geq 1
$$

Prove that $\left\{x_{n}\right\}$ is a Cauchy sequence.
4. In this question, I is an interval in the real line.
(a) Give the definition of what it means for a function $f: I \rightarrow \mathbb{R}$ to be uniformly continuous on I.
(b) Prove that the function $f:[1, \infty) \rightarrow \mathbb{R}$ given by $f(x)=\sqrt{x}$ is uniformly continuous.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be a bounded function. Let f_{+}be the function defined by $f_{+}(x)=$ $\max \{f(x), 0\}$.
(a) Suppose that f is Riemann integrable. Is f_{+}a Riemann integrable function? Prove or give a counterexample.
(b) Suppose that f_{+}is Riemann integrable. Is f a Riemann integrable function? Prove or give a counterexample.
6. (a) Give the definition of what it means for a sequence of functions $\left\{f_{n}\right\}$ on an interval I to converge uniformly on I to a function f.
(b) Let $f_{n}(x)=(\sin (x))^{n}$ for $n \geq 1$. Find $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for $x \in[0, \pi / 2]$.
(c) In part (b), does the sequence $\left\{f_{n}\right\}$ converge to f uniformly on $[0, \pi / 2]$? Support your answer.

