Linear algebra qualification exam

May 3, 2024

1. Let V be a finite-dimensional vector space over \mathbb{R}, and $T: V \rightarrow V$ be linear. Suppose $T^{3} v=v$ for all $v \in V$, and $T^{2} v \neq v$ for all nonzero $v \in V$.
a) Show that T has no real eigenvalues.
b) Show that $\operatorname{dim} V$ cannot be odd.
2. Prove Apollonius's identity, using properties of the inner product: in a triangle in \mathbb{R}^{n} with sides of length a, b, and c, let d be the line segment from the midpoint of the side length c to the opposite vertex. Then

$$
a^{2}+b^{2}=\frac{1}{2} c^{2}+2 d^{2}
$$

3. Let V and W be vector spaces, with $S, T: V \rightarrow W$ linear. Let $U=\{v \in V: S v=$ $T v\}$.
a) Show that U is a subspace of V.
b) Suppose S is injective. Show that $\operatorname{dim} U \leq \operatorname{dim} \operatorname{range}(T)$.
4. Let V be a finite-dimensional vector space, and let $S=\left\{v_{1}, \ldots, v_{k}\right\} \subseteq V$. Prove the following.
a) If S is linearly independent, then S can be completed to a basis of V.
b) If S spans V, then S contains a basis of V.
5. Let V and W be finite-dimensional vector spaces of dimensions n and m, respectively, and write $\mathcal{L}(V, W)$ for the set of all linear maps from V to W. Prove that $\mathcal{L}(V, W)$ is a vector space. What is its dimension?

