Answer 4 of the 5 questions.

1. Prove the following properties of the matrix exponential for $\mathbf{X}, \mathbf{Y} \in \mathbb{C}^{N \times N}$.
(a) If $\mathbf{X Y}=\mathbf{Y X}$, then $e^{\mathbf{X}} e^{\mathbf{Y}}=e^{\mathbf{X}+\mathbf{Y}}$.
(b) If \mathbf{X} is anti-symmetric, then $e^{\mathbf{X}}$ is an orthogonal matrix.
2. Determine and classify the steady states for the ODE

$$
\frac{d x^{2}}{d t^{2}}=x\left(1-x^{2}\right)
$$

and sketch the phase plane.
3. Consider the following ODE:

$$
y^{\prime \prime}+f(y) y^{\prime}+y=0
$$

where $y=y(t)$.
(a) Convert the equation into a system by letting $x_{1}=y$ and $x_{2}=y^{\prime}$.
(b) Show that the rest point $(0,0)$ of this system is asymptotically stable, provided that $f(y)>0$ for all y.
(c) What does this imply for the original equation?
4. Consider the initial value problem

$$
\frac{\partial \boldsymbol{x}}{d t}=\mathbf{A} \boldsymbol{x}
$$

with the initial condition $\boldsymbol{x}(0)=\boldsymbol{x}_{0}$, where

$$
\mathbf{A}=\left[\begin{array}{cccc}
0 & -2 & -1 & -1 \\
1 & 2 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \boldsymbol{x}_{0}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

(a) Find the eigenvalues of \mathbf{A}.
(b) Solve the initial value problem.
5. Consider the nonlinear system

$$
\begin{aligned}
\frac{\partial x}{\partial t} & =-2 y+y z-x^{3} \\
\frac{\partial y}{\partial t} & =x-x z-y^{3} \\
\frac{\partial z}{\partial t} & =x y-z^{3}
\end{aligned}
$$

(a) Find its linearized system at the equilibrium point $(0,0,0)$.
(b) Is the linearized system obtained in (a) asymptotically stable?
(c) Show that the nonlinear system is asymptotically stable.

