## PH.D. QUALIFYING EXAM APRIL 2013

## Four Hour Time Limit

$\mathbb{R}$ is the field of real numbers and $\mathbb{R}^{n}$ is $n$-dimensional Euclidean space
Proofs, or counter examples, are required for all problems.
(1) (a) State what it means for a function $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ to be continuous at $(a, b) \in \mathbb{R}^{2}$.
(b) Let $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ be defined by

$$
f(x, y):= \begin{cases}x^{2}+y^{2} & \text { if } x, y \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Prove that $f$ is continuous at $(0,0)$ and that $f$ is not continuous at any point $(a, b) \neq(0,0)$.
(2) Let $a_{0}, a_{1}, \cdots, a_{n}$ be real numbers with property that

$$
a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\cdots \frac{a_{n}}{n+1}=0 .
$$

Prove that the equation

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}=0
$$

has at least one solution in $(0,1)$. (Hint: use Rolle's theorem.)
(3) For each $n \in \mathbb{N}$, define $f_{n}(x):=e^{-n x^{2}}$. Show that for any given $0<a<2,\left(f_{n}\right)_{n=1}^{\infty}$ converges uniformly on $[a, 2]$ and

$$
\lim _{n \rightarrow \infty} \int_{a}^{2} f_{n}(x) d x=0
$$

(4) Let $W:=\left\{(a, b, c, d, e) \in \mathbb{R}^{5} \mid a=3 c, 2 b=4 d-5 e\right\}$.
(a) Show that $W$ is a vector subspace of $\mathbb{R}^{5}$.
(b) Find bases for $W$ and for $W^{\perp}:=\left\{v \in \mathbb{R}^{5} \mid v \perp w\right.$ for all $\left.w \in W\right\}$.
(5) Suppose that a $2 \times 2$ matrix $A$ has eigenvalues 1 and 0 . Prove that $A^{2}=A$.
(6) Let $\left(a_{n}\right)_{1}^{\infty}$ and $\left(b_{n}\right)_{1}^{\infty}$ be sequences of positive real numbers. Assume that the limit

$$
L:=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

exists and is positive and finite. Prove that $\sum_{1}^{\infty} a_{n}$ and $\sum_{1}^{\infty} b_{n}$ either both converge or both diverge.
(7) Define $\mathbb{R}^{2} \xrightarrow{F} \mathbb{R}^{2}$ by $F(x, y):=\left(e^{x}-e^{y}, e^{x}+e^{y}\right)$. Prove that $F$ is locally invertible at each point of $\mathbb{R}^{2}$. State explicitly what this means for the point $(x, y)=(1,1)$, and find the derivative of the inverse of $F$ at the point $F(1,1)$.

