PHD PRELIMINARY EXAM IN ALGEBRA AND TOPOLOGY 2017-05 May 2017

DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF CINCINNATI

Full credit can be obtained by complete answers to 5 questions, of which at least two must come from each section. The examination lasts four hours.

I. Algebra

- (1) Let $\alpha = \sqrt{2 + \sqrt{2}}$.
 - (a) Find the minimum polynomial p(x) over \mathbb{Q} that α satisfies.
 - (b) Find the splitting field E of p(x) over \mathbb{Q}
 - (c) Find the Galois group, $Gal(E/\mathbb{Q})$.
- (2) Let $F \subset K \subset L$ be a tower of field extension.
 - (a) If $[L:K]=m<\infty$ and $[K:F]=n<\infty$, prove that [L:F]=mn.
 - (b) If L is algebraic over K and K is algebraic over F, show that L is algebraic over F.
- (3) Let F be a splitting field over \mathbb{Q} of the polynomial $f(x) = x^5 3 \in \mathbb{Q}[x]$. Use the Fundamental Theorem of Galois Theory to show that the Galois group $\operatorname{Gal}(F/\mathbb{Q})$ of f(x) over \mathbb{Q} contains a subgroup of order 4 that is not normal. Conclude that $\operatorname{Gal}(F/\mathbb{Q})$ is not Abelian.
- (4) (a) Prove that every irreducible polynomial over a finite field F is separable and a polynomial in F[x] is separable if and only if it is the product of distinct irreducible polynomials.
 - (b) Do inseparable extension exist? If yes, please give an example; if no, prove it.

II. Topology.

- 1. Let X and Y be topological spaces; let $A \subset X$ and $B \subset Y$. Assume that $f: X \to Y$ is a continuous map. Proof or give a counter-example:
 - (1) if A is closed, then f(A) is closed;
 - (2) if B is closed, then $f^{-1}(B)$ is closed;
 - (3) if A is connected, then f(A) is connected;
 - (4) if B is connected, then $f^{-1}(B)$ is connected.
- 2. Let $\pi_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the projection on the first coordinate. Let A be the subspace of $\mathbb{R} \times \mathbb{R}$ consisting of all points $x \times y$ for which either $x \geq 0$ or y = 0 (or both); let $q : A \to \mathbb{R}$ be obtained by restricting π_1 .
 - (1) Show that q is a quotient map.
 - (2) Use examples to show that q is neither open nor closed.
- 3. Recall that a space is *countably compact* if every countable cover has a finite subcover. Prove that if $f: X \to \mathbf{R}$ is a continuous, real valued function defined on the countably compact space X, then f is bounded.
- 4. Give examples of path-connected topological spaces such that their fundamental groups are, respectively, \mathbb{Z}_n and $\mathbb{Z} \times \mathbb{Z}_n$. Justify your answers.