Algebra/Topology Preliminary Exam April 2018

I. Algebra

- (1). Let R be an integral domain.
 - (a) Define what it means for an element $r \in R$ to be *irreducible*.
 - (b) Define what it means for an element $r \in R$ to be prime.
 - (c) Show that in an integral domain a prime element is irreducible.
 - (d) Show that in a principal ideal domain that an irreducible element is prime.
- (2). Suppose $F = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n)$, where $\alpha_i^2 \in \mathbb{Q}$ for $i = 1, 2, \dots, n$. Prove that $\sqrt[3]{3} \notin F$.
- (3). Let F be a field.
 - (a) Let $\alpha \in F$ be algebraic. Prove there is a unique monic irreducible polynomial $m_{\alpha}(x) \in F[x]$ that has α as a root.
 - (b) Prove that $\alpha \in F$ is algebraic if and only if $F(\alpha)/F$ is a finite extension.
- (4). Let $F = \mathbb{Q}(\sqrt{3}, \sqrt{5})/\mathbb{Q}$.
 - (a) Prove that F is a Galois extension.
 - (b) Compute the Galois group.
 - (c) Explicitly give the correspondence between the subfields of F and the subgroups of the Galois group.

II. Topology

(1). Let X and Y be topological spaces and suppose $f : X \to Y$. Show the following three conditions are equivalent:

- (i) f is continuous.
- (ii) For every subset $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$.
- (iii) For every closed set $B \subset Y$, the set $f^{-1}(B)$ is closed in X.

(2). Let A and B be subspaces of X and Y, respectively. Let N be an open set in $X \times Y$ containing $A \times B$. Suppose A and B are compact. Show there exist open sets U and V in X and Y, respectively, such that $A \times B \subset U \times V \subset N$.

- (3). Let X be a topological space.
 - (a) Show that if X is regular, every pair of points of X have neighborhoods whose closures are disjoint.
 - (b) Show that if X is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.

(4). Let $q: X \to Y$ and $r: Y \to Z$ be covering maps. Set $p := r \circ q$. Show that if $r^{-1}(z)$ is finite for each $z \in Z$, then p is a covering map.