PhD Preliminary Exam in Algebra and Topology April 28, 2014

Department of Mathematical Sciences University of Cincinnati

Full credit can be obtained by complete answers to 5 questions, of which at least two must come from each section. The examination lasts four hours.

Algebra

- (1) (a) Prove that prime elements in an integral domain are irreducible.
 - (b) Let D be a principal ideal domain. Prove that if P is a non-zero prime ideal in D, then P is a maximal ideal.
 - (c) Let R[x] be the ring of polynomials in one indeterminate over an integral domain R. Prove that if R[x] is a principal ideal domain, then R is a field.
- (2) Let ζ be a primitive 10th root of unity in \mathbb{C} .
 - (a) Factor the polynomial $x^{10} 1$ into irreducibles and identify the minimum polynomial of ζ among the irreducible factors.
 - (b) Find the Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q} .
 - (c) Find all intermediate fields between $\mathbb{Q}(\zeta)$ and \mathbb{Q} .
- (3) Let F be a finite field with |F| = q. Let $G : F \to F$ be the map $G(x) = x^n$. Find necessary and sufficient conditions for G to be invertible and find the inverse of G in the case when it is invertible.
- (4) Let G be a group and K a field. A character of G in K is a homomorphism from G to the multiplicative group of the field, $\chi : G \to K^*$. Functions $f_1, \ldots, f_n : G \to K$ are said to be linearly independent if for $a_1, \ldots, a_n \in K$, $a_1f_1 + \cdots + a_nf_n = 0$ implies $a_1 = \cdots = a_n = 0$. Show that if $\chi_1 \ldots, \chi_n$ are distinct characters of G in K, then they are linearly independent.

Topology

- (1) Let $A = \mathbb{Q} \cap (0, 1)$ be a subspace of \mathbb{R} . Identify the closure of A with respect to these topologies:
 - (a) The lower-limit topology \mathcal{T}_l generated by intervals of the form [a, b).
 - (b) The topology \mathcal{T}_+ generated by intervals of the form $[a, +\infty)$.
 - (c) The finite-complement topology \mathcal{T}_f .
 - (d) The countable-complement topology \mathcal{T}_c .
 - For each of the four parts, justify your answer.
- (2) Given topologies $\mathcal{T}, \mathcal{T}'$ on a space X, let $\mathcal{T} \vee \mathcal{T}'$ denote the topology generated by the subbasis $\mathcal{T} \cup \mathcal{T}'$. Find an example of topologies $\mathcal{T}, \mathcal{T}'$ on the real line such that $(\mathbb{R}, \mathcal{T})$ and $(\mathbb{R}, \mathcal{T}')$ are both compact, but $(\mathbb{R}, \mathcal{T} \vee \mathcal{T}')$ is not.
- (3) Show that any $g: S^1 \to S^1$ that is homotopic to the identity map must be surjective.
- (4) Let $p : E \to X$ be a covering map and suppose that continuous maps $f, g : Y \to E$ satisfy $p \circ f = p \circ g$ (in other words, f and g are both liftings of the same map $h : Y \to X$). Show that if Y is path-connected and f agrees with g at some point $y_0 \in Y$, then f(y) = g(y) at every $y \in Y$.