PhD Preliminary Exam in Algebra and Topology May 2015
 Department of Mathematical Sciences
 University of Cincinnati

Full credit can be obtained by complete answers to 5 questions, of which at least two must come from each section. The examination lasts four hours.

Algebra

Let \mathcal{Q} be the field of rational numbers and \mathcal{Z} be the ring of integers.
(1) Let $f(x)=x^{8}+x^{4}+1$ be a polynomial in $\mathcal{Q}[x]$. Suppose E is a splitting field for $f(x)$ over \mathcal{Q} and set $G=\operatorname{Gal}(E / \mathcal{Q})$.
(a) Find $|E: \mathcal{Q}|$ and determine the Galois group G up to isomorphism.
(b) If $\Omega \subset E$ is the set of roots of $f(x)$, find the number of orbits for the action of G on Ω.
(2) Prove that if an integer polynomial $f(x)$ of positive degree is irreducible in $\mathcal{Z}[x]$ then it is also irreducible in $\mathcal{Q}[x]$. Use this to prove that $\mathcal{Z}[x]$ is a unique factorization domain.
(3) Let E be the field $E=\mathcal{Q}[\sqrt[3]{2}, \sqrt{2}]$. Find $|E: \mathcal{Q}|$. Find an element α such that $E=\mathcal{Q}[\alpha]$. Find the irreducible polynomial $f(x)$ in $\mathcal{Z}[x]$, for which α is a root. Is $E \supset \mathcal{Q}$ a Galois extension? Prove your statement.
(4) Let F_{q} be a finite field and E a degree n extension of F_{q}. Prove that this is a Galois extension and give an explicit description of the Galois group.

Topology

(1) Suppose X is Hausdorff, $A \subset X$ is compact, and $f: X \rightarrow X$ is continuous. Prove that the set $\{x \in A \mid f(x) \in A\}$ is also compact.
(2) If $A \subset X$ is a subset of a topological space we will let A^{\prime} denote the limit points of A.
(a) Define limit point.
(b) If $A \subset X$ an $B \subset Y$ prove that in $X \times Y$ it is always the case that $A^{\prime} \times B^{\prime} \subset(A \times B)^{\prime}$.
(c) Give an example that shows equality may not hold in the above containment.
(3) Let D^{n} be a standard n-dimensional ball and let S^{n-1} be the boundary of D^{n}. Prove that the following are equivalent.
(a) There is no retraction from $D^{n} \rightarrow S^{n-1}$.
(b) Every continuous map from $D^{n} \rightarrow D^{n}$ has a fixed point.
(4) Let X be path connected, $p: E \rightarrow Y$ be a covering map, and $f: X \rightarrow Y$ be continuous.

Prove the following: If E is simply connected, and the image of f_{*} : $\pi_{1}(X) \rightarrow \pi_{1}(Y)$ is nontrivial, then there does not exist a lifting $F: X \rightarrow E$ such that $p \circ F=f$.

