PhD Preliminary Exam in Algebra and Topology May 2015

Department of Mathematical Sciences University of Cincinnati

Full credit can be obtained by complete answers to 5 questions, of which at least two must come from each section. The examination lasts four hours.

Algebra

Let \mathcal{Q} be the field of rational numbers and \mathcal{Z} be the ring of integers.

- (1) Let $f(x) = x^8 + x^4 + 1$ be a polynomial in $\mathcal{Q}[x]$. Suppose E is a splitting field for f(x) over \mathcal{Q} and set $G = Gal(E/\mathcal{Q})$.
 - (a) Find |E:Q| and determine the Galois group G up to isomorphism.
 - (b) If $\Omega \subset E$ is the set of roots of f(x), find the number of orbits for the action of G on Ω .
- (2) Prove that if an integer polynomial f(x) of positive degree is irreducible in $\mathcal{Z}[x]$ then it is also irreducible in $\mathcal{Q}[x]$. Use this to prove that $\mathcal{Z}[x]$ is a unique factorization domain.
- (3) Let *E* be the field $E = \mathcal{Q}[\sqrt[3]{2}, \sqrt{2}]$. Find $|E : \mathcal{Q}|$. Find an element α such that $E = \mathcal{Q}[\alpha]$. Find the irreducible polynomial f(x) in $\mathcal{Z}[x]$, for which α is a root. Is $E \supset \mathcal{Q}$ a Galois extension? Prove your statement.
- (4) Let F_q be a finite field and E a degree n extension of F_q . Prove that this is a Galois extension and give an explicit description of the Galois group.

Topology

- (1) Suppose X is Hausdorff, $A \subset X$ is compact, and $f : X \to X$ is continuous. Prove that the set $\{x \in A | f(x) \in A\}$ is also compact.
- (2) If $A \subset X$ is a subset of a topological space we will let A' denote the limit points of A.
 - (a) Define *limit point*.
 - (b) If $A \subset X$ an $B \subset Y$ prove that in $X \times Y$ it is always the case that $A' \times B' \subset (A \times B)'$.
 - (c) Give an example that shows equality may not hold in the above containment.
- (3) Let D^n be a standard *n*-dimensional ball and let S^{n-1} be the boundary of D^n . Prove that the following are equivalent.
 - (a) There is no retraction from $D^n \to S^{n-1}$.
 - (b) Every continuous map from $D^n \to D^n$ has a fixed point.
- (4) Let X be path connected, $p: E \to Y$ be a covering map, and $f: X \to Y$ be continuous.

Prove the following: If E is simply connected, and the image of f_* : $\pi_1(X) \to \pi_1(Y)$ is nontrivial, then there does not exist a lifting $F: X \to E$ such that $p \circ F = f$.