PhD Preliminary Exam in Algebra and Topology August 21, 2013

Department of Mathematical Sciences University of Cincinnati

Full credit can be obtained by complete answers to 5 questions, of which at least two must come from each section. The examination lasts four hours.

Algebra

(1) Denote by $\mathbb{R}(x)$ the field of fractions of the ring $\mathbb{R}[x]$ of polynomials with real coefficients. Let S be the subring of $\mathbb{R}(x)$ consisting of those fractions whose denominators are relatively prime to $x^2 + 1$. That is,

$$S = \{p(x)/q(x) \in \mathbb{R}(x) \mid \gcd(q(x), x^2 + 1) = 1\}.$$

- (a) What are the units of S?
- (b) Identify the ideals of S.
- (c) Is S a unique factorization domain? Explain.
- (d) If \mathbb{R} is replaced by \mathbb{C} and the set of rational functions corresponding to S constructed, would it have a unique maximal ideal? Explain.
- (2) Let $K \supset F$ be fields such that K is a finite Galois extension of F and suppose that $Gal(K, F) = S_4$. How many proper intermediate fields are there between F and K? Which of these intermediate fields are Galois extensions of F and what are their Galois groups?
- (3) Let $f(x) = x^5 2 \in \mathbb{Q}[x]$.
 - (a) Find a splitting field for f over \mathbb{Q} ..
 - (b) Find the Galois group for f.
 - (c) Find all proper, nontrivial normal subgroups of this Galois group and the fields to which they correspond according to the fundamental theorem of Galois theory.
- (4) Let p be a prime number, q a power of p. Let $F \subset K$ be fields such that |F| = p and |K| = q. Let f be an irreducible polynomial in F[x]. Prove that any two irreducible factors of f over the field K have the same degree.

Topology

- (1) Let X be the countable product of the real line equipped with the box topology.
 - (a) Is X Hausdorff?
 - (b) Is X connected?
 - (c) Does X have a countable dense set?

Justify your answer.

- (2) Let D^n be the n-dimensional ball and S^{n-1} the (n-1)-dimensional sphere, which is the boundary of D^n . Prove that the following are equivalent.
 - (a) There is no retraction from D^n to S^{n-1} .
 - (b) Every continuous map from D^n to D^n has a fixed point.
- (3) Let G be a finitely generated abelian group. Find a finite dimensional path-connected topological space X with $\pi_1(X) = G$.

- (4) Let \mathbf{RP}^2 be the real projective plane; let X be the one point union $S^1 \vee \mathbf{RP}^2$.

 (a) Compute $\pi_1(X)$.

 - (b) Find the universal covering space of X.