PhD Preliminary Exam in Algebra and Topology August 20, 2014

Department of Mathematical Sciences University of Cincinnati

Full credit can be obtained by complete answers to 5 questions, of which at least two must come from each section. The examination lasts four hours.

Algebra

- (1) Let $K \subset L$ be a finite field extension.
 - (a) Prove that if [L:K] = 2, then the extension $K \subset L$ is normal.
 - (b) Prove or give a counterexample: if [L:K] is prime, then the extension $K \subset L$ is normal.
 - (c) Prove or give a counterexample: if [L : K] = 2 is prime, then the extension $K \subset L$ is separable.
- (2) Let k be a field and let $R = k[x^2, x^3]$ denote the subring of the polynomial ring k[x] generated by k and x^2 and x^3 . Prove that every ideal of R can be generated by two elements. Hint: if the ideal is nonzero, we may choose one of the generators to be a polynomial of least degree.
- (3) Let $f(X) \in Q[X]$ be a polynomial of degree 5, and let K be a splitting field of f over \mathbb{Q} . Suppose that $\operatorname{Gal}(K/Q)$ is the symmetric group S_5 .
 - (a) Show that f is irreducible over \mathbb{Q} .
 - (b) If α is a root of f, show that the only automorphism of $\mathbb{Q}(\alpha)$ is the identity.
 - (c) Show that $\alpha^5 \notin \mathbb{Q}$.
- (4) Define what is meant by a Euclidean domain.
 - (a) Prove that the ring of Gaussian integers $\mathbb{Z}[i]$ is a Euclidean domain.
 - (b) Prove that any Euclidean domain is a principal ideal domain.

Topology

- (1) Let X be a metric space. Show that X is connected if and only if for every continuous map $f: X \to \mathbb{R}, f(X)$ is an interval.
- (2) Suppose the topology of X is Hausdorff, and $f : X \to X$ is continuous. Show that the set $\{x \in X | f(x) = x\}$ is closed.
- (3) Let A = {(a, b, c) ∈ ℝ³ | a² + b² = 1, c = 0} be the "equator" circle of S². Give an example of a map f : S² → S² with the following properties:
 i) f(x) ∈ A for all x ∈ A.
 - ii) $f: S^2 \to S^2$ is homotopic to the identity map.
 - iii) $f|_A : A \to A$ is not homotopic to the identity map.
- (4) Let $p: E \to B$ be a covering map. We say a loop $\alpha: I \to B$ is *lift-preserved* if every path $\tilde{\alpha}: I \to E$ that satisfies $\alpha = p \circ \tilde{\alpha}$ is also a loop. Show that the set $\{[\alpha] \in \pi_1(B) : \alpha \text{ is lift-preserved}\} \subset \pi_1(B)$ is a normal subgroup of $\pi_1(B)$.