PhD Preliminary Exam in Algebra and Topology
 August 20, 2014
 Department of Mathematical Sciences
 University of Cincinnati

Full credit can be obtained by complete answers to 5 questions, of which at least two must come from each section. The examination lasts four hours.

Algebra

(1) Let $K \subset L$ be a finite field extension.
(a) Prove that if $[L: K]=2$, then the extension $K \subset L$ is normal.
(b) Prove or give a counterexample: if $[L: K]$ is prime, then the extension $K \subset L$ is normal.
(c) Prove or give a counterexample: if $[L: K]=2$ is prime, then the extension $K \subset L$ is separable.
(2) Let k be a field and let $R=k\left[x^{2}, x^{3}\right]$ denote the subring of the polynomial ring $k[x]$ generated by k and x^{2} and x^{3}. Prove that every ideal of R can be generated by two elements. Hint: if the ideal is nonzero, we may choose one of the generators to be a polynomial of least degree.
(3) Let $f(X) \in Q[X]$ be a polynomial of degree 5 , and let K be a splitting field of f over \mathbb{Q}. Suppose that $\operatorname{Gal}(K / Q)$ is the symmetric group S_{5}.
(a) Show that f is irreducible over \mathbb{Q}.
(b) If α is a root of f, show that the only automorphism of $\mathbb{Q}(\alpha)$ is the identity.
(c) Show that $\alpha^{5} \notin \mathbb{Q}$.
(4) Define what is meant by a Euclidean domain.
(a) Prove that the ring of Gaussian integers $\mathbb{Z}[i]$ is a Euclidean domain.
(b) Prove that any Euclidean domain is a principal ideal domain.

Topology

(1) Let X be a metric space. Show that X is connected if and only if for every continuous map $f: X \rightarrow \mathbb{R}, f(X)$ is an interval.
(2) Suppose the topology of X is Hausdorff, and $f: X \rightarrow X$ is continuous. Show that the set $\{x \in X \mid f(x)=x\}$ is closed.
(3) Let $A=\left\{(a, b, c) \in \mathbb{R}^{3} \mid a^{2}+b^{2}=1, c=0\right\}$ be the "equator" circle of S^{2}. Give an example of a map $f: S^{2} \rightarrow S^{2}$ with the following properties:
i) $f(x) \in A$ for all $x \in A$.
ii) $f: S^{2} \rightarrow S^{2}$ is homotopic to the identity map.
iii) $\left.f\right|_{A}: A \rightarrow A$ is not homotopic to the identity map.
(4) Let $p: E \rightarrow B$ be a covering map. We say a loop $\alpha: I \rightarrow B$ is lift-preserved if every path $\tilde{\alpha}: I \rightarrow E$ that satisfies $\alpha=p \circ \tilde{\alpha}$ is also a loop. Show that the set $\left\{[\alpha] \in \pi_{1}(B): \alpha\right.$ is lift-preserved $\} \subset \pi_{1}(B)$ is a normal subgroup of $\pi_{1}(B)$.

