Sample Questions for the PhD Preliminary Exam in Algebra and Topology

Department of Mathematical Sciences
University of Cincinnati
January 2013

Algebra

(1) Consider the polynomial $f(x)=x^{6}-4 x^{3}+1 \in \mathbb{Z}[x]$ which you may assume without proof to be irreducible. Let K be the splitting field of F over \mathbb{Q}.
a) Find all the complex roots of f. Show, in particular that f has two real roots whose product is 1 .
b) Let α be a real root of f. Show that $K=\mathbb{Q}(\alpha, \omega)$ where ω is a primitive cube root of one. Deduce that $|\operatorname{Gal}(K, \mathbb{Q})|=12$.
c) Show that $\operatorname{Gal}(K, \mathbb{Q})$ is a dihedral group.
(2) Let K be a field with 64 elements and denote by \mathbb{F}_{2} the field with 2 elements.
a) Find all subfields of K.
b) How many elements $\alpha \in K$ are there such that $\mathbb{F}_{2}(\alpha)=K$?
c) Determine using (b) the number of irreducible polynomials of degree 6 over \mathbb{F}_{2}.
(3) Let F be a field.
a) Outline the proof of the fact that $F[x]$ is a PID.
b) Let $R=\left\{f(x) \in F[x] \mid f^{\prime}(0)=0\right\}$. Show that R is not a UFD and find an ideal that is not principal.
(4) Let k be a field of characteristic $p>0$ and let $0 \neq c \in k$. Show that the polynomial $x^{p}-x-c$ is irreducible if and only if it has no roots in k. Show that this is false if the characteristic of k is 0 .
(5) A field extension $K \supset F$ is called biquadratic if $[K: F]=4$ and K is generated over F by the roots of two irreducible quadratic polynomials. Prove that the extension $K \supset F$ is biquadratic if and only if it is Galois with Galois group the Klein four group.
(6) Let R be a principal ideal domain with a unique non-zero prime ideal (p).
(a) Show that every element of R can be expressed uniquely in the form $u p^{n}$ for some non-negative integer n and unit u.
(b) Let $\nu: R \rightarrow \mathbb{Z}^{+}$be the function given by $\nu\left(u p^{n}\right)=n$. Show that ν satisfies
(i) $\nu(a b)=\nu(a)+\nu(b)$;
(ii) $\nu(a+b) \geq \min (\nu(a), \nu(b))$;
(c) Conversely, show that if F is a field and $\nu: R \rightarrow \mathbb{Z}^{+}$is a surjective map satisfying the properties above then the set

$$
D=\{a \in F \mid \nu(a) \geq 0\}
$$

is a principal ideal domain with a unique non-zero prime ideal.
(7) (a) State and prove Eisenstein's criterion for the irreducibility of polynomials over \mathbb{Z}.
(b) Use this result to prove that the polynomial $\left[(x+1)^{p}-1\right] / x$ is irreducible if p is prime.
(c) Deduce that the cyclotomic polynomial $\Phi_{p}(x)=1+x+x^{2}+\cdots+x^{p-1}$ is irreducible if p is prime.
(8) (a) Prove that $x^{4}-2 x^{2}-2$ is irreducible over \mathbb{Q}.
(b) Show that its roots are $\pm \sqrt{1 \pm \sqrt{3}}$.
(c) Let $K_{1}=\mathbb{Q}(\sqrt{1+\sqrt{3}}), K_{2}=\mathbb{Q}(\sqrt{1-\sqrt{3}})$. Show that $K_{1} \neq K_{2}$ and that $K_{1} \cap K_{2}=\mathbb{Q}(\sqrt{3})$.
(d) Determine the galois group of $x^{4}-2 x^{2}-2$ over \mathbb{Q}.
(9) Let k be a field and let $f(x, y) \in k[x, y]$. Prove that if $f(x, x)=0$, then $f(x, y)$ is divisible by $x-y$. (Hint: use induction on the degree of f as a polynomial in x with coefficients in $k[y])$.
(10) Let $f(x)=x^{4}+5 x+5$.
(a) Find the roots of f. What is the Galois group of f over the real numbers \mathbb{R} ?
(b) Show that f is irreducible over \mathbb{Q}.
(c) Show that the splitting field of f has degree 4 over \mathbb{Q} and find the Galois group of f over \mathbb{Q}.

Topology

(1) Prove or disprove.
(a) The product of two quotient maps is a quotient map.
(b) The product of connected spaces is connected.
(2) Prove that a product space $\Pi_{\lambda \in \Lambda} X_{\lambda}$ is contractible if and only if for each $\lambda \in \Lambda$, the space X_{λ} is contractible.
(3) Given a topological space X, the cone $C(X)$ of the space X is the topological space $X \times[0,1] / X \times\{0\}$ (i.e. $C(X)$ is the quotient space obtained from $X \times[0,1]$ by collapsing $X \times\{0\}$ to a point), and the suspension $\sum(X)$ of X is the topological space $X \times[0,1] / \sim$, where for $(a, s),(b, t) \in X \times[0,1]$, $(a, s) \sim(b, t)$ if $s=t$ and either $a=b$, or $t=0$, or $t=1$ (i.e. $\sum(X)$ is the quotient of $X \times I$ obtained by identifying $X \times\{0\}$ to a single point and $X \times\{1\}$ to another single point).
(a) Show that $C(X)$ is contractible (thus simply connected).
(b) Is $\sum(X)$ always simply connected? Prove or disprove.
(4) Let X be the complement of two circles $\left\{x^{2}+y^{2}=1 ; z=1\right\}$ and $\left\{x^{2}+y^{2}=1 ; z=-1\right\}$ in \mathbb{R}^{3}. Show that X is path connected and determine the fundamental group $\pi_{1}(X)$.
(5) Show that there is no one-to-one continuous map from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$ for $n>2$.
(6) Let C be the "boundary circle" of the (compact) Möbius band $\mathbb{M B}$. Attach $\mathbb{M B}$ to the "top" of the cylinder $\mathbb{S}^{1} \times \mathbb{I}$ using any homeomorphism $\mathbb{M B} \supset C \rightarrow \mathbb{S}^{1} \times \mathbb{I}$. Then attach the torus $\mathbb{T}^{2}:=\mathbb{S}^{1} \times \mathbb{S}^{1}$ to the "bottom" of the cylinder using any homeomorphism $\mathbb{T}^{2} \supset \mathbb{S}^{1} \times\{(1,0)\} \rightarrow \mathbb{S}^{1} \times\{0\} \subset$ $\mathbb{S}^{1} \times \mathbb{I}$. Let X be the resulting space. Thus X is obtained by first attaching a Möbius band to the top of a cylinder and then attaching a torus to the bottom of the cylinder. Calculate the fundamental group of X.
(7) For each integer $m>2$ and each $n \in \mathbb{N}$, construct a compact connected m-manifold whose fundamental group is the free group on n generators. Can you do this if $m=2$?
(8) (a) Find the universal covering space of the one point union $X:=\mathbb{K} \vee \mathbb{S}^{1}$ of the Klein bottle and the cycle.
(b) Find a covering space $Y \xrightarrow{p} X$ that corresponds to an infinite cyclic subgroup of the fundamental group of X.
(A description of a covering space includes both a definition of the total space as well as a definition of the covering map, and an indication of why the map is a covering projection.)

