ANALYSIS PRELIMINARY EXAMINATION, SPRING 2015.

Part I: REAL ANALYSIS

Here, \mathbb{R} denotes the set of all real numbers, \mathbb{R}^{2} the 2 -dimensional plane, and m denotes the Lebesgue measure on \mathbb{R}.

1. Answer the following two parts.
(a) Is \mathbb{R}^{2} a countable union of circles? Prove or disprove.
(b) Is there a measurable set $E \subset[0,1]$ for which $m(E \cap[0, x])=x^{2}$ for almost every $x \in[0,1]$? Prove or disprove.
2. Let $f, g \in L^{1}(\mathbb{R}, m)$ be both non-negative. Show that $h \in L^{1}(\mathbb{R}, m)$, where for $x \in \mathbb{R}$, the value $h(x)$ is given by

$$
h(x)=\int_{-\infty}^{\infty} f(t) g(x-t) d t
$$

Hint: First show the measurability of the map $(x, t) \mapsto g(x-t)$ by looking at this map as a composition of two functions, $\mathbb{R}^{2} \rightarrow \mathbb{R} \rightarrow \mathbb{R}$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\frac{\sin (x)}{x}$ when $x \neq 0$ and $f(0)=1$. Show that f is not Lebesgue integrable on $[0, \infty)$.
4. Show that the series $\sum_{n=1}^{\infty} x^{n} e^{-n x}$ converges for $x>0$, and that

$$
\int_{0}^{\infty}\left[\sum_{n=1}^{\infty} x^{n} e^{-n x}\right] d x=\sum_{n=1}^{\infty} \int_{0}^{\infty} x^{n} e^{-n x} d x
$$

Part II: COMPLEX ANALYSIS

Here \mathbb{C} is the complex plane and \mathbb{D} denotes the unit disk centered at 0 and $\overline{\mathbb{D}}$ is the closed unit disk centered at 0 .

1. Let f be analytic on a domain Ω that contains $\overline{\mathbb{D}}$.
(a) Show that

$$
f(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) d \theta
$$

(b) Use part (a) to show that whenever $z \in \mathbb{D}$,

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\frac{e^{i \theta}+z}{1+\bar{z} e^{i \theta}}\right) d \theta
$$

Hint: Consider conformal self-maps of the unit disk.
2. Find a power series expansion of

$$
f(z)=\frac{3 z-5}{z^{2}-4 z+3}
$$

valid for $z=2$. In what domain is your expansion valid?
3. Use complex variable techniques to compute

$$
\int_{0}^{\infty} \frac{1}{x^{4}+16} d x
$$

Give justification for all your steps.
4. Find all the conformal mappings from Ω to the unit disk, where

$$
\Omega=\{z \in \mathbb{C}:|z|>1, \operatorname{Re}(z)>0, \text { and } \operatorname{Im}(z)>0\}
$$

such that the image of $1+i$ is 0 .

