REAL \& COMPLEX ANALYSIS PRELIMINARY EXAMINATION FALL 2016, MATHEMATICS, UNIVERSITY OF CINCINNATI

Part 1. Real analysis

(1) (a) Let (X, \mathcal{A}, μ) be a measure space and $E_{n} \in \mathcal{A}$ be measurable sets for $n \in \mathbb{N}$. Prove that the set is measurable:

$$
E=\left\{x: x \text { belongs to exactly two of the sets } E_{n}\right\}
$$

(b) Suppose the measure space is a probability measure space (i.e., has measure 1) and every x is contained in exactly 3 of the E_{n} 's. Compute $\Sigma \mu\left(E_{n}\right)$. State what tools you are using. Hint: $\mu E=\int \chi_{E}$.
(2) (a) State the Radon-Nikodym theorem and define the Radon-Nikodym derivative.
(b) Show that if (X, \mathcal{A}, ν) is a measure space, g is an integrable function and $\int_{E} g \mathrm{~d} \nu=0$ for every measurable set E, then $g=0 \quad \nu$-almost everywhere.
(c) Show for the case of finite measures that the Radon-Nikodym derivative is unique.
(3) (a) Define what it means for a function $f:[a, b] \rightarrow \mathbb{R}$ to be absolutely continuous.
(b) Prove that the product of two absolutely continuous functions is absolutely continuous.
(c) Prove that if $f, g:[a, b] \rightarrow \mathbb{R}$ are absolutely continuous functions then

$$
\int_{a}^{b} f g^{\prime}=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g f^{\prime}
$$

(4) Calculate

$$
\int_{0}^{1} \int_{0}^{\infty} y \sin x e^{-x y} \mathrm{~d} x \mathrm{~d} y .
$$

You must fully justify your solution.
Hint: First use integration by parts twice to evaluate $\int_{0}^{\infty} \sin x e^{-x y} \mathrm{~d} x$.

Part 2. Complex Analysis

(1) (a) Sketch the trajectory of the path γ defined by $\gamma(t)=1+i t+t^{2}, 0 \leq t \leq 1$.
(b) Compute

$$
\int_{\gamma}\left(\bar{z}+e^{z}\right) d z
$$

(2) Show there is exactly one complex number z with $|z|<1$ satisfying

$$
e^{z}-4 z-1=0
$$

Hint: Rouche's Theorem.
(3) Evaluate $\int_{0}^{\infty} \frac{\cos (x)}{\left(1+x^{2}\right)^{2}} d x$.
(4) Suppose f is an entire function and $|f(z)| \leq A|z|^{N}+B$ for all z where $A, B \in \mathbb{R}$. Show f is a polynomial.

