\qquad M\#: \qquad

Instructor:

\qquad
Instructions: This exam has seven problems on seven pages. Show all your work, expressing yourself in clear and concise manner. Do as many problems as you can, but be advised that a complete solution to a problem may be worth more than several partial ones. Use the backs of the exam pages for work, if necessary. No calculators of any kind are allowed.

1

Let S_{1} be the 1×1 square. Define by induction the squares S_{i+1} equal to the square obtained by connecting the midpoints of the sides of the square S_{i}. Find $\sum_{i=1}^{\infty}$ perimeter $\left(S_{i}\right)$ and $\sum_{i=1}^{\infty}$ area $\left(S_{i}\right)$.

Figure 1.

2

Suppose that a, b are nonzero real numbers and f is differentiable at x. Express the limit
$\lim _{h \rightarrow 0} \frac{f(a h+x)-f(b h+x)}{h}$
In terms of a, b and $f^{\prime}(x)$.

3
Consider the series
$\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$
(a) Show that the series converges.
(b) Find the sum of the series.

4

Let x be a real number. Show that the limit exists, and then find it:
$\lim _{n \rightarrow \infty} \sin (\ldots \sin (\sin (\sin (\sin (x))))$
(above, the \sin is calculated n times).

5

Assuming that $a>-1$ and $b>-1$, use Riemann sums to calculate
$\lim _{n \rightarrow \infty} n^{b-a} \frac{1^{a}+2^{a}+3^{a}+\ldots+n^{a}}{1^{b}+2^{b}+3^{b}+\ldots+n^{b}}$.

6

It is known (to be proved in the Multivariable Calculus) that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} .
$$

Show that
$\int_{1}^{\infty}\left(\frac{1}{x}\right)^{\ln (x)} d x=\frac{\sqrt{\pi}}{2} e^{1 / 4}\left(\operatorname{erf}\left(\frac{1}{2}\right)+1\right)$
where
$\operatorname{erf}(z) \stackrel{\operatorname{def}}{=} \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t$.

7

Show that series
(a)
$\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{\ln (n)}$
and
(b)

$$
\sum_{n=1}^{\infty}\left(2^{1 / n}-1\right)^{\ln (n)}
$$

are both convergent.

