Preliminary Exam

Differential Equations August 16, 2017

Name:

Student Id #:

Instruction: Do all eight problems.

Score:

Problem 1.1 ———–	Problem 2.1———
Problem 1.2 ———–	Problem 2.2———
Problem 1.3———	Problem 2.3——-
Problem 1.4———	Problem 2.4

Part I total score : _____

Part II total score —

Total score ———

Part I: Ordinary Differential Equations

Problem 1.1

Let A be an invertible 3×3 matrix, and consider the equation $\mathbf{x}'(t) = A\mathbf{x}(t)$. Suppose there are three solutions $\mathbf{x}(t)$, $\mathbf{y}(t)$, $\mathbf{z}(t)$ with the properties

- $\lim_{t\to\infty} \mathbf{x}(t) = \mathbf{0}.$
- $\lim_{t \to -\infty} \mathbf{y}(t) = \mathbf{0}.$
- $\mathbf{z}(4\pi) = \mathbf{z}(0).$

Show that at least one of $\mathbf{x}(t)$, $\mathbf{y}(t)$, $\mathbf{z}(t)$ must be the constant solution at the origin.

Problem 1.2

The system of equations $\begin{cases} x' = x + 3 \sin y \\ y' = x^2 + 4x - 3y \end{cases}$ has an equilibrium point at the origin x = 0, y = 0.

Determine whether the equilibrium is asymptotically stable, stable, or unstable.

Problem 1.3

Use the appropriate Lyapunov function to determine the stability of the equilibrium point of the system $(\dot{x}_{1}, \dots, \dot{y}_{n}) = 0$

$$\begin{cases} \dot{x}_1 = -2x_2 + x_2x_3\\ \dot{x}_2 = x_1 - x_1x_3\\ \dot{x}_3 = x_1x_2 \end{cases}$$

Problem 1.4

Consider the autonomous differential equation

$$v_{xx} + v - v^3 + v_0 = 0$$

in which v_0 is a constant.

- a) Show that for $v_0^2 < \frac{4}{27}$, this equation has 3 stationary points and classify their type.
- b) For $v_0 = 0$, draw the phase plane for this equation..

Part II: Partial Differential Equations

Problem 2.1.

Solve the following initial value problem.

 $u_x^2 + yu_y - u = 0$ with the initial condition $u(x, 1) = 1 + x^2/4$.

Problem 2.2. Let $\Omega \subset \mathbb{R}^n$ be a bounded regular domain. Consider a non-linear boundary value problem $(u \in C^{1,1}(\Omega))$

$$\begin{cases} -\Delta u + \kappa_{(u>0)} = 0 \ in \ \Omega \\ u = \phi \ on \ \partial \Omega \end{cases}$$

where

$$\kappa_{(u>0)}(x) = \begin{cases} 1 \ if \ u(x) > 0, \\ 0 \ if \ u(x) \le 0. \end{cases}$$

Prove that $u(x) \ge 0$ in Ω if $\phi > 0$ on $\partial \Omega$.

Problem 2.3.

- (i) Show that if a function $u \in C(\Omega)$ satisfies the mean value property for each ball $B(x,r) \subset \Omega$, then $u \in C^{\infty}(\Omega)$.
- (ii) Let $\{u_n\}_{n=1}^{\infty}$ be a sequence of harmonic functions in $C(\Omega)$. If u_n is uniformly convergent to u in Ω as $n \to \infty$, then u is also harmonic function in Ω .

Problem 2.4.

Fix a number L>0 and consider the initial-boundary value problem of the linear six-order Boussinesq equation

$$\begin{cases} u_{tt} - u_{xx} + u_{xxxx} - u_{xxxxxx} = 0 & \text{in } (0, L) \times (0, T), \\ u(x, 0) = g(x) & \text{and } u_t(x, 0) = h(x), \\ u(0, t) = 0, & u(L, t) = 0, & u_{xx}(0, t) = 0, & u_{xx}(L, t) = 0, & u_{xxxx}(0, t) = 0, & u_{xxxx}(L, 0) = 0 \end{cases}$$
i) Define $E(t) = \int_0^L \left(u_t^2(x, t) + u_x^2(x, t) + u_{xxx}^2(x, t) + u_{xxx}^2(x, t) \right) dx.$ Show that
$$E(t) = \int_0^L \left(h^2(x) + (g'(x))^2 + (g''(x))^2 + (g'''(x))^2 \right) dx$$

for any $0 \le t \le T$.

ii) Show that (*) admits at most one smooth solution..