Preliminary Exam

Differential Equations
August 16, 2017

Name:

Student Id \#:

Instruction: Do all eight problems.

Score:

Problem 1.1 ——
Problem $1.2 \longrightarrow$
Problem 1.3
Problem $1.4-$

Problem 2.1——
Problem 2.2-
Problem 2.3-
Problem 2.4—

Part I total score :
Part II total score \longrightarrow

Total score

Part I: Ordinary Differential Equations

Problem 1.1

Let A be an invertible 3×3 matrix, and consider the equation $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$. Suppose there are three solutions $\mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t)$ with the properties

- $\lim _{t \rightarrow \infty} \mathbf{x}(t)=\mathbf{0}$.
- $\lim _{t \rightarrow-\infty} \mathbf{y}(t)=\mathbf{0}$.
- $\mathbf{z}(4 \pi)=\mathbf{z}(0)$.

Show that at least one of $\mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t)$ must be the constant solution at the origin.

Problem 1.2

The system of equations $\left\{\begin{array}{l}x^{\prime}=x+3 \sin y \\ y^{\prime}=x^{2}+4 x-3 y\end{array}\right.$
has an equilibrium point at the origin $x=0, y=0$.
Determine whether the equilibrium is asymptotically stable, stable, or unstable.

Problem 1.3

Use the appropriate Lyapunov function to determine the stability of the equilibrium point of the system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-2 x_{2}+x_{2} x_{3} \\
\dot{x}_{2}=x_{1}-x_{1} x_{3} \\
\dot{x}_{3}=x_{1} x_{2}
\end{array}\right.
$$

Problem 1.4

Consider the autonomous differential equation

$$
v_{x x}+v-v^{3}+v_{0}=0
$$

in which v_{0} is a constant.
a) Show that for $v_{0}^{2}<\frac{4}{27}$, this equation has 3 stationary points and classify their type.
b) For $v_{0}=0$, draw the phase plane for this equation..

Part II: Partial Differential Equations

Problem 2.1.

Solve the following initial value problem.

$$
u_{x}^{2}+y u_{y}-u=0 \text { with the initial condition } u(x, 1)=1+x^{2} / 4 .
$$

Problem 2.2. Let $\Omega \subset R^{n}$ be a bounded regular domain. Consider a non-linear boundary value problem $\left(u \in C^{1,1}(\Omega)\right)$

$$
\left\{\begin{array}{l}
-\Delta u+\kappa_{(u>0)}=0 \text { in } \Omega \\
u=\phi \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
\kappa_{(u>0)}(x)=\left\{\begin{array}{l}
1 \text { if } u(x)>0, \\
0 \text { if } u(x) \leq 0 .
\end{array}\right.
$$

Prove that $u(x) \geq 0$ in Ω if $\phi>0$ on $\partial \Omega$.

Problem 2.3.

(i) Show that if a function $u \in C(\Omega)$ satisfies the mean value property for each ball $B(x, r) \subset \Omega$, then $u \in C^{\infty}(\Omega)$.
(ii) Let $\left\{u_{n}\right\}_{n=1}^{\infty}$ be a sequence of harmonic functions in $C(\Omega)$. If u_{n} is uniformly convergent to u in Ω as $n \rightarrow \infty$, then u is also harmonic function in Ω.

Problem 2.4.

Fix a number $L>0$ and consider the initial-boundary value problem of the linear six-order Boussinesq equation

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}+u_{x x x x}-u_{x x x x x x}=0 \text { in }(0, L) \times(0, T), \tag{}\\
u(x, 0)=g(x) \text { and } u_{t}(x, 0)=h(x), \\
u(0, t)=0, u(L, t)=0, u_{x x}(0, t)=0, u_{x x}(L, t)=0, u_{x x x x}(0, t)=0, u_{x x x x}(L, 0)=0
\end{array}\right.
$$

i) Define $E(t)=\int_{0}^{L}\left(u_{t}^{2}(x, t)+u_{x}^{2}(x, t)+u_{x x}^{2}(x, t)+u_{x x x}^{2}(x, t)\right) d x$. Show that

$$
E(t)=\int_{0}^{L}\left(h^{2}(x)+\left(g^{\prime}(x)\right)^{2}+\left(g^{\prime \prime}(x)\right)^{2}+\left(g^{\prime \prime \prime}(x)\right)^{2}\right) d x
$$

for any $0 \leq t \leq T$.
ii) Show that $\left({ }^{*}\right)$ admits at most one smooth solution..

