Preliminary Exam

Differential Equations
August 22, 2013

Name:

Student Id \#:

Instruction: Do all eight problems.

Score:

Problem 1.1 ——
Problem $1.2 \longrightarrow$
Problem 1.3—
Problem $1.4-$
Part I total score :

Problem 2.1—
Problem 2.2
Problem 2.3-
Problem 2.4

Part II total score \longrightarrow
Total score

Part I: Ordinary Differential Equations

Problem 1.1: Suppose A is an $n \times n$ matrix and $t \in \mathbb{R}$.

1. Define the matrix exponential $e^{t A}$.
2. Show that $\frac{d}{d t} e^{A t}=A e^{A t}$.

Problem 1.2: Each of the following systems $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ has an equilibrium at $(0,0)$. For each system, determine which of the following behaviors are possible:
saddle \bullet unstable node \bullet stable node \bullet unstable focus \bullet stable focus \bullet center \bullet center focus
Explain your reasoning. Be sure to note any properties of $\mathbf{f}(\mathbf{x})$ you use.

1. $\dot{x}=x-3 y+y^{5}$
$\dot{y}=4 x-y+x y^{4}+x^{2} y^{2}$
2. $\begin{aligned} & \dot{x}=5 x+4 \sin y+2 x^{2} y-x y^{3} \\ & \dot{y}=x+2 y+x^{3}+7 x y\end{aligned}$

Problem 1.3: State and prove Gronwall's inequality.

Problem 1.4: Let \mathbf{f} be a C^{1} vector field in an open set $E \subset \mathbb{R}^{2}$ containing an annular region A with a smooth boundary. Suppose that \mathbf{f} has no zeros in the closure of A, and that \mathbf{f} is transverse to the boundary of A, pointing inward. Show that A contains a periodic orbit. Also show that if A contains a finite number of cycles $\left\{C_{1}, \ldots, C_{m}\right\}$, then A contains at least one stable limit cycle.

Part II: Partial Differential Equations

Problem 2.1 Let u be a smooth function satisfying

$$
\Delta u=0
$$

and $u \geq 0$ on the upper half-plane $\left\{\left(x_{1}, x_{2}\right): x_{2}>0\right\}$. Suppose $u(0,2)=1$. Prove that $u(0,3) \leq 4$.

Problem 2.2 Let $U \subset \mathbf{R}^{n}$ be a bounded domain with smooth boundary, and u a solution of the heat equation with boundary conditions

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =0 & & \text { in } U \times(0, T] \\
\frac{\partial u}{\partial \nu} & =-u & & \text { on } \partial U \times(0, \infty) . \\
u(x, 0) & =g(x) & & \text { on } U \times\{t=0\}
\end{aligned}\right.
$$

Suppose that $g(0)>0$. Show that $\max _{\bar{U}_{T}} u(x, t)=\max _{\bar{U}} g(x)$.

Problem 2.3 Let $U \subset \mathbf{R}^{n}$ be open and bounded, with smooth boundary, and $c(x, t)$ a nonnegative function on $U \times(0, \infty)$. Show that a smooth solution to the PDE

$$
\left\{\begin{aligned}
u_{t t}+c(x, t) u_{t}-\Delta u & =0 & & \text { in } U \times(0, T] \\
u(x, t) & =0 & & \text { on } \partial U \times[0, T] \\
u(x, 0) & =0 & & \text { on } U \times\{t=0\} \\
u_{t}(x, 0) & =h(x) & & \text { on } U \times\{t=0\}
\end{aligned}\right.
$$

satisfies the inequality $\int_{U} u_{t}^{2}+|D u|^{2} d x \leq \int_{U} h^{2} d x$ at every $t>0$.

Problem 2.4-a Find the entropy solution to the equation $\left\{\begin{array}{r}u_{t}+e^{u} u_{x}=0 \quad \text { in } \mathbf{R} \times(0, \infty) \\ u(x, 0)=\end{array}\left\{\begin{array}{l}1 \text { if } x<0 \\ 0 \text { if } x \geq 0\end{array}\right.\right.$.

