Preliminary Exam

Differential Equations August 22, 2013

Name:

Student Id #:

Instruction: Do all eight problems.

Score:

Problem 1.1 ———–	Problem 2.1———
Problem 1.2 ———–	Problem 2.2———
Problem 1.3——––	Problem 2.3———
Problem 1.4——–	Problem 2.4———
Part I total score : ——––	Part II total score —

Total score ———

Part I: Ordinary Differential Equations

Problem 1.1: Suppose A is an $n \times n$ matrix and $t \in \mathbb{R}$.

- 1. Define the matrix exponential e^{tA} .
- 2. Show that $\frac{d}{dt}e^{At} = Ae^{At}$.

Problem 1.2: Each of the following systems $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ has an equilibrium at (0,0). For each system, determine which of the following behaviors are possible:

 ${\rm saddle} \bullet {\rm unstable} \ {\rm node} \bullet {\rm stable} \ {\rm node} \bullet {\rm unstable} \ {\rm focus} \bullet {\rm stable} \ {\rm focus} \bullet {\rm center} \bullet {\rm center} \ {\rm focus}$

Explain your reasoning. Be sure to note any properties of f(x) you use.

1.
$$\dot{x} = x - 3y + y^5$$

 $\dot{y} = 4x - y + xy^4 + x^2y^2$
2. $\dot{x} = 5x + 4\sin y + 2x^2y - xy^3$
 $\dot{y} = x + 2y + x^3 + 7xy$

Problem 1.3: State and prove Gronwall's inequality.

Problem 1.4: Let \mathbf{f} be a C^1 vector field in an open set $E \subset \mathbb{R}^2$ containing an annular region A with a smooth boundary. Suppose that \mathbf{f} has no zeros in the closure of A, and that \mathbf{f} is transverse to the boundary of A, pointing inward. Show that A contains a periodic orbit. Also show that if A contains a finite number of cycles $\{C_1, \ldots, C_m\}$, then A contains at least one stable limit cycle.

Part II: Partial Differential Equations

Problem 2.1 Let u be a smooth function satisfying

$$\Delta u = 0$$

and $u \ge 0$ on the upper half-plane $\{(x_1, x_2) : x_2 > 0\}$. Suppose u(0, 2) = 1. Prove that $u(0, 3) \le 4$.

Problem 2.2 Let $U \subset \mathbb{R}^n$ be a bounded domain with smooth boundary, and u a solution of the heat equation with boundary conditions

$$\begin{cases} u_t - \Delta u = 0 & \text{in } U \times (0, T] \\ \frac{\partial u}{\partial \nu} = -u & \text{on } \partial U \times (0, \infty) \\ u(x, 0) = g(x) & \text{on } U \times \{t = 0\} \end{cases}$$

Suppose that g(0) > 0. Show that $\max_{\overline{U}_T} u(x,t) = \max_{\overline{U}} g(x)$.

Problem 2.3 Let $U \subset \mathbb{R}^n$ be open and bounded, with smooth boundary, and c(x,t) a nonnegative function on $U \times (0, \infty)$. Show that a smooth solution to the PDE

$$\begin{cases} u_{tt} + c(x,t)u_t - \Delta u = 0 & \text{in } U \times (0,T] \\ u(x,t) = 0 & \text{on } \partial U \times [0,T] \\ u(x,0) = 0 & \text{on } U \times \{t=0\} \\ u_t(x,0) = h(x) & \text{on } U \times \{t=0\} \end{cases}$$

satisfies the inequality $\int_U u_t^2 + |Du|^2 dx \le \int_U h^2 dx$ at every t > 0.

Problem 2.4-a Find the entropy solution to the equation \leftarrow

to the equation $\left\{ \begin{array}{c} & \\ & \\ & \end{array} \right.$	$u_t + e^u u_x = 0$ $u(x, 0) =$	in $\mathbf{R} \times (0, \infty)$ $\begin{cases} 1 \text{ if } x < 0 \\ 0 \text{ if } x \ge 0 \end{cases}$
to the equation \langle	$ \begin{cases} u_t + e^u u_x = 0 \\ u(x, 0) = \end{cases} $	$ \begin{aligned} & \text{in } \mathbf{R} \times (0,\infty) \\ & \begin{cases} 0 \text{ if } x < 0 & \cdot \\ 1 \text{ if } x \geq 0 \end{cases} \end{aligned} . $

Problem 2.4-b. Find the entropy solution to the equation