$\begin{array}{lcr}\text { Department of Mathematical Sciences } & 4^{\text {th }} \text { Floor French Hall West } \\ \text { PO Box } 210025 & \text { Phone } & \text { (513) 556-4050 } \\ \text { Cincinnati OH 45221-0025 } & \text { Fax } & \text { (513) 556-3417 }\end{array}$

PRELIMINARY EXAM IN DIFFERENTIAL EQUATIONS AUGUST 2014

Time Limit: Four Hours.

Please write your 3-digit identification number on each page.
Proofs, or counter examples, are required for all problems.

1) Show that the problem (here $y=y(t)$)

$$
y^{\prime}=y^{2 / 3}, \quad y(0)=0
$$

has infinitely many solutions. Explain why the existence and uniqueness theorem does not apply here.
2) Assume that the function $u(x) \geq 0$ is continuous for $x \geq 1$, and for some number $K>0$, we have

$$
x u(x) \leq K+\int_{1}^{x} u(t) d t, \text { for } x \geq 1
$$

Show that $u(x) \leq K$, for $x \geq 1$.
3) Let A be a real 3×3 constant matrix. Suppose that all solutions of

$$
x^{\prime}=A x
$$

are bounded as $t \rightarrow \infty$, and as $t \rightarrow-\infty$. Show that every solution is periodic, and there is a common period for all solutions.

Hint: Represent the solutions using the eigenvalues and the eigenvectors of A.
4) Show that $(0,0)$ is the only rest point in \mathbb{R}^{2} of the system

$$
\begin{gathered}
x^{\prime}=2 y-x^{3} \\
y^{\prime}=-x-y^{5},
\end{gathered}
$$

and prove that this rest point is asymptotically stable in Lyapunov's sense. (State Lyapunov's theorem that you are using.)
5) Find the solution to the differential equation

$$
\left\{\begin{aligned}
x_{1} u_{x_{1}}+2 x_{2} u_{x_{2}} & =4 u+x_{1}^{3} & & \text { in }(0, \infty) \times(0, \infty), \\
u(a, a) & =a^{3} & & \text { for all } a>0 .
\end{aligned}\right.
$$

6) Suppose u is a harmonic function in \mathbb{R}^{2}, and has the values

$$
u(0,0)=1 \quad \text { and } \quad u(1,0)=4
$$

Show that u is not strictly positive in the ball $\{|x|<2\} \subset \mathbb{R}^{2}$.
7) Let $U \subset \mathbb{R}^{n}$ be an bounded open set. Suppose u has the properties

$$
\left\{\begin{aligned}
\Delta(\Delta u)=0 & \text { in } U, \\
\Delta u>0 & \text { on } \partial U .
\end{aligned}\right.
$$

Show that u does not have a local maximum at any point $x \in U$, and therefore

$$
\max _{x \in \bar{U}} u(x)=\max _{x \in \partial U} u(x) .
$$

8) Let $U \subset \mathbb{R}^{n}$ be an bounded open set with smooth boundary.

Suppose u is a smooth solution of the differential equation

$$
\left\{\begin{aligned}
u_{t}-\Delta u+u^{3} & =0 & & \text { in } U \times(0, \infty) \\
\frac{\partial u}{\partial \nu} & =0 & & \text { on } \partial U \times(0, \infty) \\
u(x, 0) & =g(x) & & \text { on } U \times\{t=0\}
\end{aligned}\right.
$$

Show that $\int_{U}|D u(x, t)|^{2} d x \leq \int_{U}|D g(x)|^{2} d x$ for all $t>0$.

