Preliminary Exam

Differential Equations
August 17, 2016

Name:

Student Id \#:

Instruction: Do all eight problems.

Score:

Problem 1.1 ——
Problem $1.2 \longrightarrow$
Problem 1.3
Problem $1.4-$

Part I total score :

Problem 2.1——
Problem 2.2-
Problem 2.3-
Problem 2.4—

Total score

Part I: Ordinary Differential Equations

Problem 1.1

Identify the stable and unstable subspaces for the linear ODE

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & -2 & 6 \\
0 & 0 & 1
\end{array}\right] \mathbf{x}(t)
$$

Problem 1.2

Write the following system in polar coordinates and determine if the origin is a center, a stable focus or an unstable focus.

$$
\dot{x}=-y+x y^{2}, \quad \dot{y}=x+y^{5} .
$$

Problem 1.3

Show that if a function $x(t)$ satisfies $0 \leq \frac{d x}{d t} \leq x^{2}$ for all t, and $x(0)=-1$, then $x(t)<0$ for all $t \in[0, \infty)$.

Problem 1.4

Show that

$$
\dot{x}=y, \quad \dot{y}=-x+\left(1-x^{2}-y^{2}\right) y
$$

has a unique stable limit cycle which is the ω-limit set of every trajectory except the critical point at the origin. (Hint: compute \dot{r}).

Problem 2.1.

Find the solution to the differential equation $\left\{\begin{aligned} u_{x} u_{y}=1 & & \text { in }(0, \infty) \times(0, \infty), \\ u(x, 0)=2 \sqrt{x} & & \text { for all } x>0 .\end{aligned}\right.$

Problem 2.2.

(i) Solve the following initial-value-problem.

$$
\begin{cases}u_{t}+2 u_{x}-4 u_{y}+5 u_{z}=0, & (x, y, z, t) \in \Re^{3} \times(0, \infty), \\ u(x, y, z, 0)=x^{2}+y-3 z & (x, y, z, t) \in \Re^{3} .\end{cases}
$$

(ii) Use energy estimate method to show that the following initial-boundary-value problem admits at most one smooth solution $u=u(x, t)$.

$$
\left\{\begin{array}{l}
u_{t}+2 u_{x}+12 u_{x x x}=0, \quad x \in(0, L), t \in(0, T) \\
u(x, 0)=g(x), \quad x \in(0, L) \\
u(0, t)=0, \quad u(L, t)=0, \quad u_{x}(L, t)=0
\end{array}\right.
$$

Problem 2.3.

Let U be the unit ball in \mathbb{R}^{3}. Suppose u solves the heat equation

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =0 \text { in } U_{T} \\
u(x, t) & =6 t \text { when }|x|=1, \\
u(x, 0) & =g(x)
\end{aligned}\right.
$$

Suppose that $g \leq 0$. Prove that $u(x, t) \leq 6 t+|x|^{2}$ for all $(x, t) \in U_{T}$.

Problem 2.4.

Find a solution formula for the following initial boundary value problem of the wave equation.

$$
\left\{\begin{array}{ll}
u_{t t}-u_{x x}=0, & x, t \in(0, \infty), \\
u(x, 0)=g(x), & u_{t}(x, 0)=h(x), \\
u_{x}(0, t)=0, & t \geq 0
\end{array} \quad x \in(0, \infty),\right.
$$

