Preliminary Exam

Differential Equations
May 6, 2015

Name:

Student Id \#:

Instruction: Do all eight problems.

Score:

Problem 1.1 ——
Problem $1.2 \longrightarrow$
Problem 1.3
Problem $1.4-$

Problem 2.1——
Problem 2.2-
Problem 2.3-
Problem 2.4

Part I total score :
Part II total score \longrightarrow

Total score

Part I: Ordinary Differential Equations

Problem 1.1

Solve the equation $\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}5 & -2 \\ 2 & 1\end{array}\right] \mathbf{x}(t)$ with initial value $\mathbf{x}(0)=\left[\begin{array}{l}a \\ b\end{array}\right]$.

Problem 1.2

Suppose $\mathbf{x}(t)$ solves the equation $\mathbf{x}^{\prime}=A \mathbf{x}$, with A being an $n \times n$ matrix, and its first coordinate is $x_{1}(t)=5 t^{2} \cos (3 t)+2 \sin (3 t)-e^{2 t} \sin (3 t)+4 t$.
What is the minimum number of dimensions n ?

Problem 1.3

Assume that $f(t)$ is continuous for $t \geq 0$, and let $F(t)=\frac{1}{t} \int_{0}^{t} f(s) d s$ be its average value. Show that if $f(t) \geq F(t)$ for all $t>0$, then $F(t)$ is an increasing function, and also $f(t) \geq f(0)$ for all $t>0$.

Problem 1.4

Consider the system

$$
\begin{aligned}
& \frac{d x}{d t}=5 x-y+\frac{2}{3} x y \\
& \frac{d y}{d t}=x+3 y
\end{aligned}
$$

i) Determine all equilibria of the system.
ii) Classify the equilibrium at the origin as a source, sink, or saddle. What does this indicate about trajectories of the system?

Part II: Partial Differential Equations

Problem 2.1.

Find the solution to the differential equation $\begin{cases}u_{x_{1}} u_{x_{2}}=1+4 x_{2} & \text { in }(0, \infty) \times(0, \infty), \\ u(a, 0)=a & \text { for all } a \in \mathbb{R} .\end{cases}$

Problem 2.2.

Suppose $\Delta u=0$ in the upper half-plane $\mathbb{R} \times(0, \infty)$, and suppose u is nonnegative.
i) Show that $u(0, y+h) \leq\left(1+\frac{h}{y-h}\right)^{n} u(0, y)$ for all $0<h<y$.
ii) Show that $u(0, y) \leq y^{n} u(0,1)$ for all $y \geq 1$.
(Hint: find an upper bound for $u_{y}(0, y)$.)

Problem 2.3.

Let $U \subset \mathbb{R}^{n}$ be an bounded open set. Suppose u solves the heat equation

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =0 & & \text { in } U_{T} \\
u(x, t) & =4 t-t^{2} & & \text { on } \Gamma_{T}
\end{aligned}\right.
$$

Prove that $u(x, t)<4$ for all $(x, t) \in U_{T}$.

Problem 2.4.

Fix a number $L>0$ and consider the initial-boundary value problem of the linear Boussinesq equation

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}+u_{x x x x}=0 \text { in }(0, L) \times(0, T) \tag{}\\
u(x, 0)=g(x) \text { and } u_{t}(x, 0)=h(x), \\
u(0, t)=0, u(L, t)=0, u_{x x}(0, t)=0, \text { and } u_{x x}(L, t)=0
\end{array}\right.
$$

i) Define $E(t)=\int_{0}^{L}\left(u_{t}(x, t)^{2}+u_{x}(x, t)^{2}+u_{x x}(x, t)^{2}\right) d x$. Show that

$$
E(t)=\int_{0}^{L}\left(h^{2}(x)+\left(g^{\prime}(x)\right)^{2}+\left(g^{\prime \prime}(x)\right)^{2}\right) d x
$$

for any $0 \leq t \leq T$.
ii) Show that $\left({ }^{*}\right)$ admits at most one smooth solution..

