Preliminary Exam

Differential Equations May 6, 2015

Name:

Student Id #:

Instruction: Do all eight problems.

Score:

Problem 1.1 ———–	Problem 2.1———
Problem 1.2 ———–	Problem 2.2———
Problem 1.3———	Problem 2.3——-
Problem 1.4———	Problem 2.4

Part I total score : _____

Part II total score —

Total score ———

Part I: Ordinary Differential Equations

Problem 1.1

Solve the equation
$$\mathbf{x}'(t) = \begin{bmatrix} 5 & -2 \\ 2 & 1 \end{bmatrix} \mathbf{x}(t)$$
 with initial value $\mathbf{x}(0) = \begin{bmatrix} a \\ b \end{bmatrix}$.

Problem 1.2

Suppose $\mathbf{x}(t)$ solves the equation $\mathbf{x}' = A\mathbf{x}$, with A being an $n \times n$ matrix, and its first coordinate is $x_1(t) = 5t^2 \cos(3t) + 2\sin(3t) - e^{2t} \sin(3t) + 4t$.

What is the minimum number of dimensions n?

Problem 1.3

Assume that f(t) is continuous for $t \ge 0$, and let $F(t) = \frac{1}{t} \int_0^t f(s) ds$ be its average value. Show that if $f(t) \ge F(t)$ for all t > 0, then F(t) is an increasing function, and also $f(t) \ge f(0)$ for all t > 0.

Problem 1.4

Consider the system

$$\frac{dx}{dt} = 5x - y + \frac{2}{3}xy$$
$$\frac{dy}{dt} = x + 3y$$

i) Determine all equilibria of the system.

ii) Classify the equilibrium at the origin as a source, sink, or saddle. What does this indicate about trajectories of the system?

Part II: Partial Differential Equations

Problem 2.1.

Find the solution to the differential equation
$$\begin{cases} u_{x_1}u_{x_2} = 1 + 4x_2 & \text{in } (0, \infty) \times (0, \infty), \\ u(a, 0) = a & \text{for all } a \in \mathbb{R}. \end{cases}$$

Problem 2.2.

Suppose $\Delta u = 0$ in the upper half-plane $\mathbb{R} \times (0, \infty)$, and suppose u is nonnegative.

i) Show that $u(0, y + h) \le (1 + \frac{h}{y-h})^n u(0, y)$ for all 0 < h < y.

ii) Show that $u(0, y) \le y^n u(0, 1)$ for all $y \ge 1$. (Hint: find an upper bound for $u_y(0, y)$.)

Problem 2.3.

Let $U \subset \mathbb{R}^n$ be an bounded open set. Suppose u solves the heat equation

$$\begin{cases} u_t - \Delta u = 0 & \text{in } U_T \\ u(x,t) = 4t - t^2 & \text{on } \Gamma_T \end{cases}$$

Prove that u(x,t) < 4 for all $(x,t) \in U_T$.

Problem 2.4.

Fix a number L > 0 and consider the initial-boundary value problem of the linear Boussinesq equation

$$\begin{cases} u_{tt} - u_{xx} + u_{xxxx} = 0 & \text{in } (0, L) \times (0, T), \\ u(x, 0) = g(x) & \text{and } u_t(x, 0) = h(x), \\ u(0, t) = 0, & u(L, t) = 0, & u_{xx}(0, t) = 0, & \text{and } u_{xx}(L, t) = 0. \end{cases}$$
(*)

i) Define
$$E(t) = \int_0^L \left(u_t(x,t)^2 + u_x(x,t)^2 + u_{xx}(x,t)^2 \right) dx$$
. Show that

$$E(t) = \int_0^L \left(h^2(x) + (g'(x))^2 + (g''(x))^2 \right) dx$$

for any $0 \le t \le T$.

ii) Show that (*) admits at most one smooth solution..