Preliminary Exam

Differential Equations
May 2, 2016

Name:

Student Id \#:

Instruction: Do all eight problems.

Score:

Problem 1.1 ——
Problem $1.2 \longrightarrow$
Problem 1.3
Problem $1.4-$

Problem 2.1——
Problem 2.2-
Problem 2.3-
Problem 2.4

Part I total score :
Part II total score \longrightarrow

Total score

Part I: Ordinary Differential Equations

Problem 1.1 Consider the system

$$
\begin{aligned}
x^{\prime} & =x+\alpha y \\
y^{\prime} & =x+y,
\end{aligned}
$$

where $\alpha \in \mathbb{R}$.
(a) For each value of α, identify if the equilibrium point $(x, y)=(0,0)$ is a saddle, stable/unstable node, stable/unstable focus, center, or degenerate.
(b) For $\alpha=-1$, compute the solution to the system with initial condition $x(0)=2, y(0)=3$.

Problem 1.2 Assume that the functions $a(x) \geq 0$, and $u(x) \geq 0$ are continuous for $x \geq x_{0}$.
(a) Show that if

$$
u(x) \leq \int_{x_{0}}^{x} a(t) u(t) d t \quad \text { for any } x \geq x_{0}
$$

then $u(x)=0$, for $x \geq x_{0}$.
(b) Show that if

$$
u(x) \leq \int_{x_{0}}^{x} a(t) u^{2}(t) d t \quad \text { for any } x \geq x_{0}
$$

then $u(x)=0$, for $x \geq x_{0}$.

Problem 1.3 Use the appropriate Liapunov functions to determine the stability of the equilibrium point $(0,0)$ of the following systems:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+x_{2}+x_{1} x_{2} \\
\dot{x}_{2}=x_{1}-x_{2}-x_{1}^{2}-x_{2}^{3}
\end{array}\right.
$$

Problem 1.4 Show that the system

$$
\left\{\begin{array}{l}
\dot{x}=-y+x\left(1-x^{2}-y^{2}\right)^{2} \\
\dot{y}=x+y\left(1-x^{2}-y^{2}\right)^{2}
\end{array}\right.
$$

has a semi-stable limit cycle Γ. Sketch the phase portrait for this system.

Part II: Partial Differential Equations

Problem 2.1. Suppose $\Omega \subset \mathbb{R}^{n}$ is a bounded open domain and $u(x)$ is a smooth function that satisfies

$$
\left\{\begin{aligned}
\Delta u+x_{1} u^{2} u_{x_{1}}=0 & \text { for all } u \in \Omega \\
u(x)=0 & \text { for all } x \in \partial \Omega
\end{aligned}\right.
$$

Show that $u(x)=0$ for all $x \in \Omega$.

Problem 2.2. Suppose $\Omega \subset \mathbb{R}^{n}$ is a connected, bounded open domain with smooth boundary Γ and $u(x)$ is a smooth function that satisfies

$$
\Delta u=0 .
$$

(a) Let ω any nonempty open subset of Ω. Show that $u(x)=0$ for any $x \in \Omega$ if $u(x)=0$ for any $x \in \omega$.
(b) Let Γ_{0} be any nonempty open subset of Γ. Show that $u(x)=0$ for any $x \in \Omega$ if

$$
\left.u\right|_{\Gamma_{0}}=0,\left.\quad \frac{\partial u}{\partial \nu}\right|_{\Gamma_{0}}=0 .
$$

Problem 2.3.

Find the entropy solution to the modified Burger's equation

$$
\left\{\begin{aligned}
u_{t}+3 u^{2} u_{x} & =0 \quad \text { in } \mathbf{R} \times(0, \infty) \\
u & =g \quad \text { on } \mathbf{R} \times\{t=0\}
\end{aligned}\right.
$$

with the initial data $g(x)=\left\{\begin{array}{ll}0, & \text { if } x<0 \\ 1, & \text { if } 0 \leq x \leq 1 \\ 0, & \text { if } x>1\end{array}\right.$.

Problem 2.4. Let u solves the in initial value problem for the wave equation in one dimension

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0 \quad \text { in }(-\infty, \infty) \times(0, \infty) \\
u=g, \quad u_{t}=h \quad \text { on }(-\infty, \infty) \times\{t=0\}
\end{array}\right.
$$

Suppose g, h have compact support. Define

$$
k(t)=\frac{1}{2} \int_{-\infty}^{\infty} u_{t}^{2}(x, t) d x, \quad p(t)=\frac{1}{2} \int_{-\infty}^{\infty} u_{x}^{2}(x, t) d x
$$

Prove that $k(t)=p(t)$ for all large enough time t.

