Preliminary Exam

Differential Equations April 30, 2013

Name:

Student Id \#:

Instruction: Do all eight problems.

Score:

Problem 1.1 ——
Problem $1.2 \longrightarrow$
Problem 1.3-
Problem $1.4-$
Part I total score :

Problem 2.1——
Problem 2.2
Problem 2.3-
Problem 2.4

Part II total score

Total score

Part I: Ordinary Differential Equations

Problem 1.1

1. Define the operator norm $\|T\|$ of a linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
2. Show that $|T(\mathbf{x})| \leq\|T\| \cdot|\mathbf{x}|$ for any linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and any $\mathbf{x} \in \mathbb{R}^{n}$.
3. Given an $n \times n$ matrix A and $t \in \mathbb{R}$, define the matrix exponential $e^{A t}$ as a series. Show that for any fixed $t_{0}>0$ this series converges absolutely and uniformly for all $|t| \leq t_{0}$.

Problem 1.2: Solve the initial value problem

$$
\begin{aligned}
& \dot{x}_{1}=5 x_{1}-3 x_{2} \\
& \dot{x}_{2}=3 x_{1}-x_{2}
\end{aligned}, \quad x_{1}(0)=1, \quad x_{2}(0)=2 .
$$

Problem 1.3: Consider the scalar initial value problem $\dot{x}(t)=2 t x^{2}, \quad x(0)=1$.
(a) Solve the initial value problem exactly via separation of variables.
(b) Rewrite the system as an autonomous (i.e. no explicit time dependence) nonlinear initial value system by introducing $y(t)=t$ (be sure to determine $y(0)$).
(c) Use Picard iteration to compute the first four approximations $u_{0}(t), u_{1}(t), u_{2}(t)$, and $u_{3}(t)$ of the system you found in part (b). Compare your answer with the Maclaurin series for the function $x(t)$ you found in part (a).

Problem 1.4: Consider the system

$$
\begin{aligned}
\dot{x} & =x^{2}+a \\
\dot{y} & =-y .
\end{aligned}
$$

Determine the equilibria and their stability. Draw the bifurcation diagram. Draw the phase portraits for representative values of a.

Part II: Partial Differential Equations

Problem 2.1. Find the solution to

$$
\left\{\begin{aligned}
u_{t}+2 x_{1} u_{x_{1}}+x_{2} u_{x_{2}} & =u+x_{1} & & \text { in } \mathbf{R}^{2} \times(0, \infty), \\
u\left(x_{1}, x_{2}, 0\right) & =g\left(x_{1}, x_{2}\right) & & \text { on } \mathbf{R}^{2} \times\{t=0\} .
\end{aligned}\right.
$$

Problem 2.2. Let $U \subset \mathbf{R}^{n}$ be a bounded domain with smooth boundary. Prove that there does not exist any solution to the boundary-value problem

$$
-\Delta u=0 \text { in } U, \frac{\partial u}{\partial \nu}=1 \text { on } \partial U .
$$

Problem 2.3. Let Ω be a bounded domain in R^{n} with smooth boundary. Suppose u is a smooth solution of

$$
\left\{\begin{aligned}
u_{t}-\Delta u+c(x, t) u=0 & \text { in } \Omega \times(0, \infty) \\
u=0 & \text { on } \partial \Omega \times[0, \infty) \\
u=g & \text { on } \Omega \times\{t=0\}
\end{aligned}\right.
$$

where $c(x, t)$ is a bounded function and $g \geq 0$.
(a) Assume additionally that $c(x, t)$ is nonnegative. Show that

$$
u(x, t) \geq 0, \quad \forall(x, t) \in \Omega \times[0, \infty)
$$

(b) Is (a) still true without assuming $c(x, t)$ is nonnegative? If yes, give a proof; if no, give a counter-example.

Problem 2.4. Let $U \subset \mathbf{R}^{n}$ be open and bounded, with smooth boundary.
Show that a smooth solution to the $\mathrm{PDE}\left\{\begin{array}{rlrl}u_{t t}+\Delta u=0 & & \text { in } U \times[0, T] \\ u(x, t) & =0 & & \text { on } \partial U \times[0, T] \\ u(x, 0) & =g(x) & & \text { on } U \times\{t=0\} \\ u_{t}(x, 0) & =0 & & \text { on } U \times\{t=0\}\end{array}\right.$
satisfies the inequality $\int_{U}|D u|^{2} d x \geq \int_{U}|D g|^{2} d x$ at every $t>0$.

