
Prelim Exam Linear Models Spring 2018

Preliminary Examination:
LINEAR MODELS

Answer all questions and show all work.
Q1, Q3, and Q4 are 20 points each, and Q2 is 10 points.

1. Consider the model
Yi = β + εi, i = 1, . . . , n,

where β is a scalar and
εi = ε∗1 + · · ·+ ε∗i ,

for ε∗1, . . . , ε
∗
n being a sequence of uncorrelated random variables with mean zero and unit

variance.

To answer the following questions, you may wish to use the fact that the inverse of an
m×m matrix of the form

M =



1 1 1 · · · 1 1
1 2 3 · · · 2 2
1 2 3 · · · 3 3
...

...
... · · · ...

...
1 2 3 · · · m− 1 m− 1
1 2 3 · · · m− 1 m


can be expressed as

M−1 =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
0 0 −1 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · −1 0
0 0 0 · · · 2 −1
0 0 0 · · · −1 1


.

a. Provide a simplified expression for the ordinary least squares estimator β̂OLS of β.

b. Similarly, provide a simplified expression for the generalized least squares estimator
β̂GLS of β.

c. Calculate the variances Var(β̂OLS) and Var(β̂GLS) of the two estimators in parts (a)
and (b) and compare them.
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d. A friend of yours, observing the structure of the model assumed hear, suggests that
it would be natural to instead consider estimating β using the differences Di =
Yi − Yi−1, i = 1, . . . , n, where Y0 = 0. Comment on this idea and compare what
you will get in this case using OLS and GLS.

2. Consider the cell means version of the one-way ANOVA model with three groups, two
replicates per group:

Yij = µi + εij, i = 1, 2, 3; j = 1, 2;

where {εij}
iid∼ N(0, σ2) and Y ≡ (Y11, Y12, Y21, Y22, Y31, Y32)

′ = (1, 3, 2, 6, 1,−1). Con-
sider the hypothesis H0 : µ2 =

µ1+µ3
2

.

a. Show that under H0, the fitted response, Ŷ, will be in L(16,x), the vector space
spanned by 16 and x = (−1,−1, 0, 0, 1, 1)′.

b. Conduce the test H0 using F test. You need only compute the F statistic and give its
distribution under H0. You don’t need to compute the p-value, critical value or give
the conclusion.

3. In longitudinal data analysis, we usually have repeated and irregularly spaces measure-
ments per subject. We assume that the observed data are realizations of a smooth random
function. Let Yij be the jth observation of the random function Xi(·), made at time Tij ,
where i = 1, . . . , n, and j = 1, . . . , Ni. We assume that {Xi(·)} are independent across n
subjects, and further assume that

Xi(t) = µ(t) +
∞∑
k=1

ξikφk(t),

where φk is called the kth eigenfunction; corresponding eigenvalues are nonincreasing
λ1 ≥ λ2 ≥ · · · ; {ξik} are uncorrelated random variables with mean 0 and variance
E(ξ2ik) = λk. Let εij be the additional measurement errors that are assumed to be iid
and independent of the random coefficients {ξik}. Then we have the following model:

Yij = Xi(Tij) + εij = µ(Tij) +
∞∑
k=1

ξikφk(Tij) + εij,

where E(εij) = 0, and Var(εij) = σ2.

a. Show thatE(Xi(t)) = µ(t), andG(s, t) ≡ Cov(Xi(s), Xi(t)) =
∑∞

k=1 λkφk(s)φk(t).
Here, G(·, ·) is called the covariance function.

b. The random coefficient ξik is called the functional principal component (FPC) score
of the kth principal component for the ith subject. Now we assume that the FPC
scores {ξik} and measurement errors {εij} are jointly Gaussian. Define

Yi = (Yi1, . . . , YiNi
)′,
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Xi = (Xi(Ti1), . . . , Xi(TiNi
))′,

µi = (µ(Ti1), . . . , µ(TiNi
)′,

φik = (φk(Ti1), . . . , φk(TiNi
)′.

Define ΣYi
= Cov(Yi,Yi). Give its expression in terms of G(·, ·) and σ2.

c. Define ξ̃ij = E(ξik|Yi). Consider the K leading eigenfunctions only. Define ξ̃K,i =

(ξ̃i1, . . . , ξ̃iK)
′ and ξK,i = (ξi1, . . . , ξiK)

′. Show that

ξ̃ik = λkφ
′
ikΣ

−1
Yi
(Yi − µi)

and derive the distribution of ξ̃K,i − ξK,i.

d. Recall the following result from STAT 7024: Let V be a positive definite matrix.
Then for any vector b,

suph 6=0
(h′b)2

h′Vh
= b′V−1b.

Prove that for a fixed non-zero p-vector x and a constant c > 0, x′x ≤ c2 if and
only if |a′x| ≤ c

√
a′a, for all a ∈ Rp.

e. Let ΩK ≡ Cov(ξ̃K,i − ξK,i, ξ̃K,i − ξK,i). Let A ⊂ RK be a vector space with
dimension d ≤ K. Prove that for all linear combinations l′ξK,i simultaneously,
where l ∈ A,

l′ξK,i ∈ l′ξ̃K,i ±
√
χ2
d,1−αl

′ΩKl,

with probability (1−α). Hint: You may use the result in part (d), no matter whether
you derive the proof there.

4. An industrial engineer is studying the hand insertion of electronic components on printed
circuit boards to improve the speed of the assembly operation. He has designed a assem-
bly fixtures (i = 1, . . . , a) and b workplace layouts (j = 1, . . . , b) that seem promising.
Operators are required to perform the assembly, and it is decided to randomly select c
operators (k = 1, . . . , c) for each fixture-layout combination. However, because the work-
places are in different locations within the plants, it is difficult to use the same c operators
for each layout. The treatment combinations in this design are run in random order, and
n replicates (l = 1, . . . , n) are obtained. Assume the errors, εijkl ∼ N(0, σ2), identically
and independently distributed.

a. Write down an appropriate ANOVA model with all possible interactions including
model assumptions for this design.

b. Find the expected mean squares (EMS) for all of main effects and interaction effects.

c. Describe how to test each of main effects as well as interaction effects.
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