Linear Models Prelim Exam

12-4pm, Tuesday, August 20, 2013

- 1. Let $x = (X_1, X_2)^T \sim N_2(\mu I_2, \Sigma)$, where $\Sigma = (1 \rho)I_2 + \rho J_2$. Let $Q_1 = (X_1 X_2)^2$ and $Q_2 = (X_1 + X_2)^2$.
 - (a) Show that $Q_1/2(1-\rho)$ has a χ^2 distribution.
 - (b) Prove that Q_1 and Q_2 are distributed independently.
- 2. Consider a linear model, $\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}$, with $\mathbf{E}(\boldsymbol{\epsilon}) = \mathbf{0}$ and $\mathbf{Var}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I_n}$, where $\mathbf{r}(\mathbf{X})=\mathbf{p}$. Show that $\sum_{i=1}^{n} \mathbf{Var}(\hat{\mathbf{y}_i}) = \mathbf{p} \sigma^2$ where $\hat{\mathbf{y}_i}$ is the predicted value of \mathbf{y}_i for i=1,...,n.
- 3. Let $Y_{ij} = \mu + \tau_i + \epsilon_{ij}$, and $\epsilon_{ij} \sim i.i.d. N(0, \sigma^2)$, i=1, ..., a, j=1, ..., n. For $\beta = (\mu, \tau_1, ..., \tau_a)^T$, define $c^T \beta = \left[\sum_{i=1}^l \tau_i l \cdot \tau_{l+1}\right] / \sqrt{l(l+1)}$.
 - (a) Show that μ is not estimable function.
 - (b) Verify $\boldsymbol{c}^{T}\boldsymbol{\beta}$ is estimable.
 - (c) Construct a 95% confidence interval for $c^T \beta$
- 4. The multivariate linear regression model is $\sum_{(n \times m)} = \sum_{(n \times (r+1))} \frac{\beta}{((r+1) \times m)} + \sum_{(n \times m)} \frac{\beta}{(n \times m)}$ with

 $E(\mathbf{\epsilon}_{(i)}) = \mathbf{0}$ and $Cov(\mathbf{\epsilon}_{(i)}, \mathbf{\epsilon}_{(k)}) = \sigma_{ik}\mathbf{I}$, i, k = 1, 2, ..., m and the rank of the design matrix \mathbf{Z} , rank(\mathbf{Z})= r+1 < n. The *m* observations on the j^{th} trial have covariance matrix $\mathbf{\Sigma} = \{\sigma_{ij}\}$, but observations from different trials are uncorrelated. Show that

- (a) The least square estimator $\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{(1)} & \vdots & \hat{\boldsymbol{\beta}}_{(2)} & \vdots & \cdots & \vdots & \hat{\boldsymbol{\beta}}_{(m)} \end{bmatrix}$ satisfies $E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$ and $Cov(\hat{\boldsymbol{\beta}}_{(i)}, \hat{\boldsymbol{\beta}}_{(k)}) = \sigma_{ik} (\mathbf{Z}'\mathbf{Z})^{-1}$, i, k = 1, 2, ..., m.
- (b) The residuals $\hat{\boldsymbol{\varepsilon}} = \begin{bmatrix} \hat{\boldsymbol{\varepsilon}}_{(1)} & \vdots & \hat{\boldsymbol{\varepsilon}}_{(2)} & \vdots & \cdots & \vdots & \hat{\boldsymbol{\varepsilon}}_{(m)} \end{bmatrix} = \mathbf{Y} \mathbf{Z}\hat{\boldsymbol{\beta}}$ satisfy $E(\hat{\boldsymbol{\varepsilon}}) = \mathbf{0}$ and $E(\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}) = (n-r-1)\boldsymbol{\Sigma}$.
- (c) $\hat{\beta}$ and $\hat{\epsilon}$ are uncorrelated.

- 5. Let X_1 , X_2 , X_3 , X_4 and X_5 be independent and identically distributed random vectors with mean vector μ and covariance matrix Σ .
- (i) Find the mean vector and covariance matrices for each of the two linear combinations of random vectors $\frac{1}{5}X_1 + \frac{1}{5}X_2 + \frac{1}{5}X_3 + \frac{1}{5}X_4 + \frac{1}{5}X_5$ and $X_1 X_2 + X_3 X_4 + X_5$ in terms of μ and Σ .
- (ii) Obtain the covariance between the above two linear combinations of random vectors.
- 6. Suppose the observed data Y_i has a binomial distribution denoted as $Bin(n_i, \pi_i)$. Let $y_i = Y_i / n_i$ as a sample proportion of success for n_i trials and record a single predictor variable X_i along with the n_i trials, i = 1, 2, ..., N. A logistic regression model is fitted to the data as

$$\tau_i = \frac{\exp(\alpha + \beta X_i)}{1 + \exp(\alpha + \beta X_i)}$$

J

- (i) Show that $\frac{\partial l}{\partial \alpha} = \sum_{i=1}^{N} n_i (y_i \pi_i)$ and $\frac{\partial l}{\partial \beta} = \sum_{i=1}^{N} n_i (y_i \pi_i) X_i$, where *l* is the logarithm of likelihood function with data $\{(Y_i, X_i, n_i), i = 1, ..., N\}$.
- (ii) Show the maximum likelihood estimator of α and β using Fisher Scoring algorithm.