Linear Models Prelim Exam

1. Let $x=\left(X_{1}, X_{2}\right)^{T} \sim N_{2}\left(\mu 1_{2}, \Sigma\right)$, where $\Sigma=(1-\rho) I_{2}+\rho J_{2}$. Let $Q_{1}=\left(X_{1}-X_{2}\right)^{2}$ and $Q_{2}=\left(X_{1}+X_{2}\right)^{2}$.
(a) Show that $Q_{1} / 2(1-\rho)$ has a χ^{2} distribution.
(b) Prove that Q_{1} and Q_{2} are distributed independently.
2. Consider a linear model, $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, with $\mathbf{E}(\boldsymbol{\epsilon})=\mathbf{0}$ and $\operatorname{Var}(\boldsymbol{\epsilon})=\boldsymbol{\sigma}^{2} \mathbf{I}_{\mathbf{n}}$, where $\mathrm{r}(\mathrm{X})=\mathrm{p}$. Show that $\sum_{i=1}^{n} \operatorname{Var}\left(\hat{\mathbf{y}}_{\mathbf{i}}\right)=\mathbf{p} \boldsymbol{\sigma}^{2}$ where $\widehat{\mathbf{y}}_{\mathbf{i}}$ is the predicted value of $\mathbf{y}_{\mathbf{i}}$ for $\mathrm{i}=1, \ldots$, n .
3. Let $\boldsymbol{Y}_{i j}=\boldsymbol{\mu}+\boldsymbol{\tau}_{i}+\boldsymbol{\epsilon}_{i j}$, and $\boldsymbol{\epsilon}_{i j} \sim$ i.i.d. $\boldsymbol{N}\left(\mathbf{0}, \boldsymbol{\sigma}^{2}\right), \mathrm{i}=1, \ldots, \mathrm{a}, \mathrm{j}=1, \ldots$, n . For $\boldsymbol{\beta}=\left(\boldsymbol{\mu}, \boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{a}\right)^{T}$, define

$$
c^{T} \beta=\left[\sum_{i=1}^{l} \tau_{i}-l \cdot \tau_{l+1}\right] / \sqrt{l(l+1)} .
$$

(a) Show that $\boldsymbol{\mu}$ is not estimable function.
(b) Verify $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{\beta}$ is estimable.
(c) Construct a 95% confidence interval for $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{\beta}$.
4. The multivariate linear regression model is $\underset{(\mathbf{n} \times \mathbf{m})}{\mathbf{Y}}=\underset{(\mathbf{n} \times(\mathbf{r}+1))}{\mathbf{Z}} \underset{(\mathbf{r}+1) \times \mathbf{m})}{\boldsymbol{\beta}}+\underset{(\mathbf{n} \times \mathbf{m})}{\boldsymbol{\varepsilon}}$ with $E\left(\boldsymbol{\varepsilon}_{(i)}\right)=\mathbf{0}$ and $\operatorname{Cov}\left(\boldsymbol{\varepsilon}_{(i)}, \boldsymbol{\varepsilon}_{(k)}\right)=\sigma_{i k} \mathbf{I}, \mathrm{i}, \mathrm{k}=1,2, \ldots, \mathrm{~m}$ and the rank of the design matrix $\mathbf{Z}, \operatorname{rank}(\mathbf{Z})=\mathrm{r}+1<\mathrm{n}$. The m observations on the $j^{\text {th }}$ trial have covariance matrix $\boldsymbol{\Sigma}=\left\{\sigma_{\mathrm{ij}}\right\}$, but observations from different trials are uncorrelated. Show that
(a) The least square estimator $\hat{\boldsymbol{\beta}}=\left[\left.\begin{array}{lllllll}\hat{\boldsymbol{\beta}}_{(\mathbf{1})} & \vdots & \hat{\boldsymbol{\beta}}_{(\mathbf{2})} & \vdots & \ldots & \vdots & \hat{\boldsymbol{\beta}}_{(\mathrm{m})}\end{array} \right\rvert\,\right.$ satisfies

$$
E(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta} \text { and } \operatorname{Cov}\left(\hat{\boldsymbol{\beta}}_{(\mathrm{i})}, \hat{\boldsymbol{\beta}}_{(\mathbf{k})}\right)=\sigma_{i k}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1}, \mathrm{i}, \mathrm{k}=1,2, \ldots, \mathrm{~m} .
$$

(b) The residuals $\hat{\boldsymbol{\varepsilon}}=\left[\begin{array}{llllll}\hat{\boldsymbol{\varepsilon}}_{(1)} & \vdots & \hat{\boldsymbol{\varepsilon}}_{(\mathbf{2})} & \vdots & \cdots & \vdots \\ \hat{\boldsymbol{\varepsilon}}_{(\mathbf{m})}\end{array}\right]=\mathbf{Y}-\mathbf{Z} \hat{\boldsymbol{\beta}}$ satisfy $E(\hat{\boldsymbol{\varepsilon}})=\mathbf{0}$ and $E\left(\hat{\boldsymbol{\varepsilon}}^{\prime} \hat{\boldsymbol{\varepsilon}}\right)=(n-r-1) \boldsymbol{\Sigma}$.
(c) $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\varepsilon}}$ are uncorrelated.
5. Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}, \mathbf{X}_{4}$ and \mathbf{X}_{5} be independent and identically distributed random vectors with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.
(i) Find the mean vector and covariance matrices for each of the two linear combinations of random vectors $\frac{\mathbf{1}}{5} X_{1}+\frac{1}{5} X_{2}+\frac{1}{5} X_{3}+\frac{1}{5} X_{4}+\frac{1}{5} X_{5}$ and $\mathbf{X}_{1}-\mathbf{X}_{2}+\mathbf{X}_{3}-\mathbf{X}_{4}+\mathbf{X}_{5}$ in terms of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$.
(ii) Obtain the covariance between the above two linear combinations of random vectors.
6. Suppose the observed data Y_{i} has a binomial distribution denoted as $\operatorname{Bin}\left(n_{i}, \pi_{i}\right)$. Let $y_{i}=Y_{i} / n_{i}$ as a sample proportion of success for n_{i} trials and record a single predictor variable X_{i} along with the n_{i} trials, $\mathrm{i}=1,2, \ldots, \mathrm{~N}$. A logistic regression model is fitted to the data as

$$
\pi_{i}=\frac{\exp \left(\alpha+\beta X_{i}\right)}{1+\exp \left(\alpha+\beta X_{i}\right)}
$$

(i) Show that $\frac{\partial l}{\partial \alpha}=\sum_{i=1}^{N} n_{i}\left(y_{i}-\pi_{i}\right)$ and $\frac{\partial l}{\partial \beta}=\sum_{i=1}^{N} n_{i}\left(y_{i}-\pi_{i}\right) X_{i}$, where l is the logarithm of likelihood function with data $\left\{\left(Y_{i}, X_{i}, n_{i}\right), \mathrm{i}=1, \ldots, \mathrm{~N}\right\}$.
(ii) Show the maximum likelihood estimator of α and β using Fisher Scoring algorithm.

