QUALIFYING EXAMINATION, MAY 2017 (4 HOURS)

Cincinnati OH 45221-0025

In this exam \mathbb{R} denotes the field of all real numbers and \mathbb{R}^n is n-dimensional Euclidean space. Proofs, or counter examples, are required for all problems.

- (1) Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function with the property that for all $a, b \in \mathbb{R}$ with a < b we have $\int_a^b f(x)dx \ge 0$. Prove that $f \ge 0$ on \mathbb{R} .
- (2) Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers such that $5x_{n+1}=3x_n+4$. Prove that this sequence is convergent, and find its limit. Hint: First guess what the limit, if it exists, should be.
- (3) For each positive integer n let $f_n:(-1,1)\to\mathbb{R}$ be a differentiable function with continuous derivatives and $f_n(0) = 0$. Suppose that there is a function $g: (-1,1) \to 0$ \mathbb{R} such that $f'_n \to g$ uniformly in (-1,1). Prove that there is a function $f: (-1,1) \to \mathbb{R}$ \mathbb{R} such that $f_n \to f$ uniformly and f' = g.
- (4) Let $\varphi: \mathbb{R}^2 \to \mathbb{R}$ and $p = (a, b) \in \mathbb{R}^2$. Suppose that there is an open set $U \subset \mathbb{R}^2$ with $p \in U$ such that $\frac{\partial f}{\partial x}(x,y)$ exists for all $(x,y) \in U$ and is continuous. Suppose in addition that $\frac{\partial f}{\partial u}(p)$ exists. Show that f is differentiable at p. Hint: You might want to use the mean value theorem associated with functions of one variable.
- (5) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} \frac{xy}{|x|+|y|} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = 0. \end{cases}$$

- (a) Show that f is continuous at (0,0).
- (b) Is f differentiable at (0,0)? Justify your answer.
- (6) Suppose that V is an infinite dimensional vector space (over \mathbb{R}) with an inner product, and that $T:V\to V$ is an onto map, then its adjoint T^* (that is, the map that satisfies $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in V$) is injective.
- (7) Suppose that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ and $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ are two collections of vectors from \mathbb{R}^{2017} such that

$$\vec{v}_i \cdot \vec{w}_j = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$$

Prove that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a linearly independent set.

(8) Suppose that V and W are subspaces of the real vector space \mathbb{R}^n . If $V \cup W$ is a subspace of \mathbb{R}^n , prove that either $V \subseteq W$ or $W \subseteq V$.