Department of Mathematical Sciences $4^{\text {th }}$ Floor French Hall West
PO Box 210025
Phone (513) 556-4050
Cincinnati

GRADUATE PROGRAM QUALIFYING EXAM

Four Hour Time Limit

\mathbb{R} is the field of real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space
Proofs, or counter examples, are required for all problems.
(1) (a) Define what it means to say that a function $I \xrightarrow{f} \mathbb{R}$ is uniformly continuous; here $I \subset \mathbb{R}$ is an interval.
(b) Find an example of a function that is continuous at each point of an interval I but is not uniformly continuous on I. Be sure to prove that your function is not uniformly continuous.
(c) Give a condition, or conditions, on I that ensure that each continuous map $f: I \rightarrow \mathbb{R}$ is in fact uniformly continuous. (No proof required.)
(2) Let $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ be sequences of real numbers with the property that for each $n \in \mathbb{N}$, $a_{n} \leq b_{n} \leq c_{n}$. Suppose that both series

$$
\sum_{n=1}^{\infty} a_{n} \quad \text { and } \quad \sum_{n=1}^{\infty} c_{n}
$$

converge. Prove that $\sum_{n=1}^{\infty} b_{n}$ converges.
(3) Let V be the vector space of all continuous functions $[-1,1] \xrightarrow{f} \mathbb{R}$; here addition and scalar multiplication are defined as usual via $(f+g)(x):=f(x)+g(x)$ and $(c g)(x):=c g(x)$. Let W and Z be the collections of functions f in V that satisfy $f(-x)=-f(x)$ and $f(-x)=f(x)$, respectively, for all $x \in[-1,1]$.
(a) Show that W is a vector subspace of V.
(b) Given that Z is also vector subspace of V, show that V is the direct sum of W and Z.
(4) Let $\mathbb{R}^{2} \xrightarrow{L} \mathbb{R}^{2}$ be the linear map that does the following (in the order given):
(a) Triples the x component and doubles the y component.
(b) Rotates the resulting vector 45° clockwise around the origin.
(c) Projects the resulting vector onto the x-axis.

Write down the unique 2×2 matrix A that has the property that

$$
\text { for all }\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { in } \mathbb{R}^{2}, \quad L\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=A\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

(5) Let V be the vector space of real symmetric $n \times n$ matrices.
(a) Show that

$$
\langle A, B\rangle:=\operatorname{tr}(A B)
$$

defines an inner product on V, where $\operatorname{tr}(M)$ denotes the trace of a matrix M.
(b) Determine the dimensions of the following:

- V,
- the subspace W of V consisting of those matrices A such that $\operatorname{tr}(A)=0$,
- the orthogonal complement W^{\perp} of W in V (relative to the inner product defined in part (a)).
(6) Let $[a, b] \xrightarrow{f} \mathbb{R}$ be continuous. Prove that there exists a point $c \in[a, b]$ such that

$$
f(c) \leq \frac{1}{2}[f(a)+f(b)]
$$

(7) Show that if f is differentiable, but unbounded on some finite interval (a, b), then f^{\prime} is unbounded on (a, b). (Caution: f^{\prime} need not be integrable!)
(8) (a) Define the notion of the gradient of a function $\mathbb{R}^{n} \xrightarrow{\varphi} \mathbb{R}$.
(b) Let f, g, h be the real-valued functions given by

$$
\begin{aligned}
f(x, y, z) & :=x^{2}+y z, \\
g(x, y) & :=y^{3}+x y, \\
h(x) & :=\sin (x) .
\end{aligned}
$$

Compute the gradient of the function

$$
\varphi(x, y, z):=h(f(x, y, z) g(x, y))
$$

