MATHEMATICS QUALIFYING EXAM

AUGUST 15, 2016

Four Hour Time Limit

Notation: \mathbb{R} is the field of real numbers and \mathbb{R}^n is n-dimensional Euclidean space. The norm of $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ is $\|\mathbf{x}\| := \sqrt{\sum_{j=1}^n x_j^2}$. $\mathcal{M}_{m \times n}(\mathbb{K})$ is the set of m by n matrices over a field \mathbb{K} .

Unless explicitly stated, proofs, or counterexamples, are required for all problems.

- 1. Determine the largest element in the set $\{1, \sqrt{2}, \sqrt[3]{3}, \dots, \sqrt[n]{n}\}$. Carefully justify all your claims.
- 2. Let $\{f_n\}_0^{\infty}$ be a uniformly convergent sequence of bounded real functions on \mathbb{R} . Show that the sequence $\{f_n\}_0^{\infty}$ is uniformly bounded on \mathbb{R} , i.e., there exists an M > 0 such that for all n and all $x \in \mathbb{R}$, $|f_n(x)| \leq M$.
- 3. Let $\{f_n\}_1^{\infty}$ be a sequence of functions that map [0,1] into \mathbb{R} with the following properties:
 - (a) For every n, $f_n(0) = 0$.
 - (b) For every $n, f_n(1) = 1$.
 - (c) For every n, the function f_n is monotone increasing.
 - (d) For every $x \in (0, 1)$, $\lim_{n\to\infty} f_n(x) = 1$.

Prove that

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 1.$$

(You may use without proof the fact that each f_n is Riemann-integrable on [0,1].)

4. Suppose that f is a continuous function on the interval [0,1] taking values in [0,2]. Prove that there exists a number c in [0,1] such that f(c) = 2c.

Hint: Consider the function g(x) = f(x) - 2x.

- 5. Consider the vector space V of all polynomials on interval [0,1], with the inner product on V given by $\langle p,q\rangle=\int_0^1 p(x)q(x)dx$. Find an **orthogonal** basis for the linear subspace H of V consisting of all polynomials of degree less than or equal to 2. You must verify the orthogonality and the basis properties.
- 6. Let A, B be two $n \times n$ matrices over \mathbb{R} .
 - (a) Show that if 0 is an eigenvalue of AB, then 0 is also an eigenvalue of BA.
 - (b) Show that if $\lambda \neq 0$ is an eigenvalue of AB, then λ is also an eigenvalue of BA.
- 7. Define the trace of a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ to be $\operatorname{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}$, the sum of the diagonal entries of A.
 - (a) Prove that for $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ we have $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
 - (b) Prove that if $A = UCU^{-1}$ with $U, C \in \mathcal{M}_{n \times n}(\mathbb{R})$ and U invertible, then tr(A) = tr(C).
- 8. Suppose $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable with uniformly bounded partial derivatives

$$\left|\frac{\partial f_i}{\partial x_j}(x_1, x_2)\right| \le 1 \text{ for } i, j = 1, 2 \text{ and all } x_1, x_2 \in \mathbb{R}$$

Prove that there exists a constant L such that

$$\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\| \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^2$$

(Here $\mathbf{f} = (f_1, f_2)$ and $\mathbf{x} = (x_1, x_2)$).