Department of Mathematical Sciences 4th Floor French Hall West PO Box 210025

Cincinnati OH 45221-0025

Phone (513) 556-4050 (513) 556-3417

MATHEMATICS QUALIFYING EXAM

AUGUST 2015

Four Hour Time Limit

 \mathbb{R} is the field of real numbers and \mathbb{R}^n is n-dimensional Euclidean space, \mathbb{N} is the set of natural numbers (positive integers).

Unless explicitly stated, proofs, or counterexamples, are required for all problems.

- **1.** Let $(f_n)_1^{\infty}$ be a sequence of functions $[0,1] \xrightarrow{f_n} \mathbb{R}$.
 - (a) Define what it means to say that $(f_n)_1^{\infty}$ converges pointwise to a function f.
 - (b) Define what it means to say that $(f_n)_1^{\infty}$ converges uniformly to a function f.
 - (c) Suppose that $(f_n)_1^{\infty}$ converges uniformly to a continuous function f. Let $(x_n)_1^{\infty}$ be a sequence of real numbers that converges to $a \in [0,1]$. Prove that the sequence $(f_n(x_n))_1^{\infty}$ converges to f(a).
- **2.** Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function such that $\lim_{x \to \infty} \frac{f(x)}{x} = 0$ and suppose that $x = \lim_{x \to \infty} \frac{f'(x)}{x}$ exists and in \mathbb{R} . suppose that $\alpha = \lim_{x \to \infty} f'(x)$ exists and is finite. Prove that $\alpha = 0$.
- **3.** Suppose $\{a_n\}_0^\infty$ and $\{b_n\}_0^\infty$ are two sequences of real numbers, such that

$$a_{n+1} - a_n = |b_{n+1} - b_n|$$
 for $n = 0, 1, \dots$

Use properties of real numbers to prove the following two implications.

- (a) If $\{a_n\}$ is bounded then $\{a_n\}$ converges.
- (b) If $\{a_n\}$ converges then $\{b_n\}$ converges.
- **4.** The distance between two nonempty sets $A, B \subset \mathbb{R}^n$ is

$$\mathbf{d}(A,B) := \inf \{ \|a - b\| : a \in A, b \in B \} .$$

- (a) Suppose that $A, B \subset \mathbb{R}^n$ are disjoint, nonempty, A is compact, and B is closed. Prove that $\mathbf{d}(A, B) > 0$.
- (b) Give an example of disjoint closed nonempty sets A and B in \mathbb{R}^2 with $\mathbf{d}(A, B) =$ 0. (No formal proof is required for this part.)

5. Let C[0,1] be the vector space of all continuous functions on the interval [0,1]. For each function $f \in C[0,1]$, define

$$(Tf)(x) := \int_0^x f(t)dt.$$

(That is, to each continuous function f we assign a new function $Tf:[0,1] \to \mathbb{R}$, which is given by the integral of f as shown.)

- (a) Show that T is a linear mapping from C[0,1] into C[0,1].
- (b) Prove that T is one-to-one.
- (c) Show that T is not onto. Hint: What property does each Tf have? (There is more than one property that can be used to answer this question!)
- **6.** Let $T: \mathbf{V} \to \mathbf{W}$ be a one-to-one linear transformation between vector spaces \mathbf{V} and \mathbf{W} . Let $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\} \subset \mathbf{V}$. Prove that the following statements are equivalent:
 - (a) $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is linearly independent.
 - (b) $\{T(\mathbf{v}_1), T(\mathbf{v}_2), ..., T(\mathbf{v}_n)\}$ is linearly independent.

Be sure to indicate where in your proof you use the one-to-one property.

7. Let

$$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$$

Prove that every matrix B with real entries such that AB = BA has the form B = sA + tI where s, t are real numbers and I is the identity matrix.

8. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be a continuously differentiable map with F(1,1) = (1,0) and with derivative

$$DF(x,y) = \begin{pmatrix} y & x \\ -x & y \end{pmatrix}$$
 for all (x,y) .

- (a) Prove that F is locally invertible at (1,1), explaining what this means and citing the relevant theorem(s).
- (b) Compute $DF^{-1}(1,0)$.
- (c) Compute

$$\lim_{(x,y)\to(1,1)}\frac{\|F(x,y)-F(1,1)\|}{\|(x,y)-(1,1)\|}.$$

(Hint: notice that DF(x, y) is a scalar multiple of an orthogonal matrix).