$\bar{\sim} \sim$ MATHEMATICS QUALIFYING EXAM
 MAY 2, 2016

Cincinnati

Four Hour Time Limit

Notation: \mathbb{R} is the field of real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space. The norm of $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is $\|\mathbf{x}\|:=\sqrt{\sum_{j=1}^{n} x_{j}^{2}}$ and the inner product is $\mathbf{x} \cdot \mathbf{y}:=\sum_{j=1}^{n} x_{j} y_{j} . \mathcal{L}(V, W)$ is the linear space of all linear transformations from the vector space V to the vector space W.
Unless explicitly stated, proofs, or counterexamples, are required for all problems.

1. Define the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ by $a_{0}=\sqrt{2}$, and $a_{n+1}=\sqrt{2+a_{n}}, n \geq 0$.

Show that the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ converges, and determine its limit.
2. Define a sequence of functions $\left\{f_{n}\right\}_{1}^{\infty}$ by $f_{n}(x)=\frac{1}{1+n(n x-1)^{2}}$.
(a) Show that $\left\{f_{n}\right\}_{1}^{\infty}$ converges pointwise to 0 on $[0,1]$.
(b) Verify that the convergence is not uniform on $[0,1]$.
3. Show that for any integer $n \geq 1$, the equation $x^{n}+n x-1=0$ has a unique positive solution x_{n}. Furthermore, show that x_{n} is such that for any $p>1$ the series

$$
\sum_{n=1}^{\infty} x_{n}^{p}
$$

is convergent.
4. Define the notions of continuity and uniform continuity for a function $f: \mathcal{D} \rightarrow \mathbb{R}$ (Here \mathcal{D} is a subset of \mathbb{R}). Use the definitions to prove that a continuous function $f:[0,1] \rightarrow \mathbb{R}$ is uniformly continuous.
5. Consider the vector space V of continuous real-valued functions on the interval $[0,1]$ with the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$. State and prove the Cauchy-Schwarz inequality for this inner product. (Hint: It may be easier to prove it first for the case when $\int_{0}^{1} f^{2}(x) d x=1$ and $\int_{0}^{1} g^{2}(x) d x=1$.)
6. Find the dimension and a basis for the linear space $\mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$.
7. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation that preserves lengths, i.e., $\|T(\mathbf{x})\|=\|\mathbf{x}\|$ for all $\mathrm{x} \in \mathbb{R}^{n}$.
(a) Show also that T preserves orthogonality, i.e. if $\mathbf{x} \cdot \mathbf{y}=0$, then $T(\mathbf{x}) \cdot T(\mathbf{y})=0$.
(b) Show that the columns of the matrix of T in the standard basis of \mathbb{R}^{n} are mutually orthogonal.
8. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { when }(x, y) \neq(0,0) \\ 0 & \text { when }(x, y)=(0,0)\end{cases}
$$

Prove that
(a) f is continuous;
(b) the partial derivatives $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist;
(c) f is not differentiable at $(0,0)$.

