Cincinnati

Department of Mathematical Sciences	$4^{\text {th }}$ Floor French Hall West	
PO Box 210025	Phone	$(513) 556-4050$
Cincinnati OH 45221-0025	Fax	$(513) 556-3417$

mathematics qualifying exam AUGUST 2014

Four Hour Time Limit
\mathbb{R} is the field of real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space
Proofs, or counter examples, are required for all problems.
(1) Let $\mathbb{R} \xrightarrow{f} \mathbb{R}$ be a continuous function.
(a) Show that for each $x \in \mathbb{R}$,

$$
f(x)-f(0)=\sum_{k=0}^{\infty}\left[f\left(\frac{x}{2^{k}}\right)-f\left(\frac{x}{2^{k+1}}\right)\right] .
$$

(b) Explain what it means to say that f is differentiable at $x=0$.
(c) Suppose that $\lim _{h \rightarrow 0} \frac{f(h)-f(h / 2)}{h / 2}=0$. Use part (a), or some other method, to prove that f is differentiable at $x=0$ with $f^{\prime}(0)=0$.
(2) Let $[0,1] \xrightarrow{f} \mathbb{R}$ be a continuous function.
(a) Show that for each $\varepsilon \in(0,1)$,

$$
\lim _{n \rightarrow+\infty} \int_{0}^{1-\varepsilon} f\left(x^{n}\right) d x=(1-\varepsilon) f(0)
$$

(b) Find

$$
\lim _{n \rightarrow+\infty} \int_{0}^{1} f\left(x^{n}\right) d x
$$

(Hint: Start by explaining why f is bounded.)
(3) Suppose that A and B are 3×3 matrices and $A B$ is nonsingular. Prove that both A and B are nonsingular.
(4) Let m and n be positive integers with $m>n$. Prove that there do not exist $m \times n$ and $n \times m$ matrices A and B such that $A B=I_{m}$ (the $m \times m$ identity matrix).
(5) Let A be an $n \times n$ matrix whose entries are all real numbers. Suppose that A has n distinct non-zero eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ in \mathbb{R}. Let $\mathbf{v}_{i} \in \mathbb{R}^{n}$ be an eigenvector of A with corresponding eigenvalue λ_{i}. Prove that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.
(6) Let $[0,1] \xrightarrow{g} \mathbb{R}$ be a continuous function. Suppose that $\left(f_{n}\right)_{1}^{\infty}$ is a sequence of continuous functions $f_{n}:[0,1] \rightarrow[0,1]$ that converges uniformly on $[0,1]$ to some function $f:[0,1] \rightarrow[0,1]$. Prove that $\left(g \circ f_{n}\right)_{1}^{\infty}$ converges uniformly to $g \circ f$ on $[0,1]$.
(7) Define $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ by

$$
f(x, y):= \begin{cases}\frac{x y^{2}}{x^{2}+y^{2}} & \text { when }(x, y) \neq 0 \\ 0 & \text { when }(x, y)=0\end{cases}
$$

Prove that the partial derivatives $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist, but f is not differentiable at $(0,0)$.
(8) Let $C:=\left\{(x, y) \in \mathbb{R}^{2} \mid(x+y)^{3}=3 x+5 y\right\}$. Consider the point $p:=(1,1)$ in C. Prove that there is an open neighborhood W of p such that $C \cap W$ is the graph $y=f(x)$ of some smooth function f defined near $x=1$, and calculate $f^{\prime}(1)$.

