MATHEMATICS QUALIFYING EXAM MAY 2015

Four Hour Time Limit
\mathbb{R} is the field of real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space
Proofs, or counterexamples, are required for all problems.
(1) Let $\mathbb{R} \xrightarrow{f} \mathbb{R}$ be differentiable. Suppose that f^{\prime} is bounded on \mathbb{R}. Prove that there exist nonnegative constants C and D such that for all $x \in \mathbb{R},|f(x)| \leq C|x|+D$.
(2) Define a sequence of functions $\left(f_{n}\right)_{1}^{\infty}$ by $f_{n}(x):=e^{-n(n x-1)^{2}}$.
(a) Show that $\left(f_{n}\right)_{1}^{\infty}$ converges pointwise to 0 on $[0,1]$.
(b) Verify that the convergence is not uniform on $[0,1]$.
(c) Prove that $\lim _{n \rightarrow+\infty} \int_{0}^{1} f_{n}(x) d x=0$.
(3) Let V be the span of $\mathbf{v}=(1,2,1) \in \mathbb{R}^{3}$. Let $W \subset \mathbb{R}^{3}$ be the orthogonal complement of V; that is, $W=\left\{\mathbf{x} \in \mathbb{R}^{3}: \mathbf{x} \cdot \mathbf{v}=0\right\}$. Let $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denote the linear transformation given by orthogonal projection onto W. Find the matrix that represents P relative to the usual basis for \mathbb{R}^{3}.
(4) Let V be a finite dimensional vector space. A linear operator T on V is nilpotent if $T \neq 0$ and for some $n \in \mathbb{N}, T^{n}=0$.
(a) Let $W_{i}=T^{i}(V)$. Show that if $W_{i} \neq\{0\}$, then $W_{i+1} \subsetneq W_{i}$.
(b) Prove that there is a basis for V such that the matrix representing T is strictly upper triangular (that is, it is upper triangular with zeros on the main diagonal)
(5) A square matrix is called a row stochastic matrix if all its entries are non-negative real numbers and the entries in each row add up to 1 . Prove that:
(a) The product of two row stochastic matrices is again a row stochastic matrix.
(b) Each stochastic matrix has 1 as an eigenvalue. (Hint: Exhibit an eigenvector.)
(6) Let $(X,\|\cdot\|)$ be a normed vector space and S be a non-empty subset of X. Which of the following conditions always implies the other two conditions? Prove one of the two implications. Also, give one example illustrating that one condition does not imply some other.
(a) S is closed and bounded.
(b) S is sequentially compact
(c) S is complete.
(7) Let Ω be an open subset of \mathbb{R}^{n}. Suppose $\Omega \xrightarrow{f} \mathbb{R}$ is differentiable at the point $a \in \Omega$ with $f(a) \neq 0$. Prove that $1 / f$ is differentiable at a, and find a formula for its derivative.
(8) Let \mathcal{C} be the locus of all points (x, y, z) in \mathbb{R}^{3} with

$$
x^{2}+y^{2}+z^{2}=1 \quad \text { and } \quad x^{2}-y^{2}-z=0 .
$$

Show that \mathcal{C} is a smooth curve in the following sense: For each point $p \in \mathcal{C}$, there exist open sets $U \subset \mathbb{R}, W \subset \mathbb{R}^{3}$ and a continuously differentiable map $f: U \rightarrow W$ such that $p \in W$ and $f(U)=\mathcal{C} \cap W$.

