

MATHEMATICS QUALIFYING EXAM MAY 2015 Four Hour Time Limit

 \mathbb{R} is the field of real numbers and \mathbb{R}^n is *n*-dimensional Euclidean space

Proofs, or counterexamples, are required for all problems.

- (1) Let $\mathbb{R} \xrightarrow{f} \mathbb{R}$ be differentiable. Suppose that f' is bounded on \mathbb{R} . Prove that there exist nonnegative constants C and D such that for all $x \in \mathbb{R}$, $|f(x)| \leq C|x| + D$.
- (2) Define a sequence of functions $(f_n)_1^\infty$ by $f_n(x) := e^{-n(nx-1)^2}$.
 - (a) Show that $(f_n)_1^{\infty}$ converges pointwise to 0 on [0, 1].
 - (b) Verify that the convergence is not uniform on [0, 1].
 - (c) Prove that $\lim_{n \to +\infty} \int_0^1 f_n(x) dx = 0.$
- (3) Let V be the span of $\mathbf{v} = (1, 2, 1) \in \mathbb{R}^3$. Let $W \subset \mathbb{R}^3$ be the orthogonal complement of V; that is, $W = {\mathbf{x} \in \mathbb{R}^3 : \mathbf{x} \cdot \mathbf{v} = 0}$. Let $P : \mathbb{R}^3 \to \mathbb{R}^3$ denote the linear transformation given by orthogonal projection onto W. Find the matrix that represents P relative to the usual basis for \mathbb{R}^3 .
- (4) Let V be a finite dimensional vector space. A linear operator T on V is nilpotent if $T \neq 0$ and for some $n \in \mathbb{N}$, $T^n = 0$.
 - (a) Let $W_i = T^i(V)$. Show that if $W_i \neq \{0\}$, then $W_{i+1} \subsetneq W_i$.
 - (b) Prove that there is a basis for V such that the matrix representing T is strictly upper triangular (that is, it is upper triangular with zeros on the main diagonal)
- (5) A square matrix is called a *row stochastic matrix* if all its entries are non-negative real numbers and the entries in each row add up to 1. Prove that:
 - (a) The product of two row stochastic matrices is again a row stochastic matrix.
 - (b) Each stochastic matrix has 1 as an eigenvalue. (Hint: Exhibit an eigenvector.)
- (6) Let $(X, \|\cdot\|)$ be a normed vector space and S be a non-empty subset of X. Which of the following conditions *always* implies the other two conditions? Prove one of the two implications. Also, give one example illustrating that one condition does not imply some other.
 - (a) S is closed and bounded.
 - (b) S is sequentially compact
 - (c) S is complete.

Date: April 28, 2015.

- (7) Let Ω be an open subset of \mathbb{R}^n . Suppose $\Omega \xrightarrow{f} \mathbb{R}$ is differentiable at the point $a \in \Omega$ with $f(a) \neq 0$. Prove that 1/f is differentiable at a, and find a formula for its derivative.
- (8) Let \mathcal{C} be the locus of all points (x, y, z) in \mathbb{R}^3 with

$$x^{2} + y^{2} + z^{2} = 1$$
 and $x^{2} - y^{2} - z = 0$.

Show that \mathcal{C} is a smooth curve in the following sense: For each point $p \in \mathcal{C}$, there exist open sets $U \subset \mathbb{R}$, $W \subset \mathbb{R}^3$ and a continuously differentiable map $f: U \to W$ such that $p \in W$ and $f(U) = \mathcal{C} \cap W$.