

## MATHEMATICS QUALIFYING EXAM APRIL 2014

Four Hour Time Limit

 $\mathbb R$  is the field of real numbers and  $\mathbb R^n$  is n-dimensional Euclidean space

Proofs, or counter examples, are required for all problems.

(1) Let  $[0,1] \xrightarrow{f} \mathbb{R}$  be a continuous function. Prove that the graph of f,  $\mathbf{Gr}(f) := \{(x, f(x)) \mid x \in [0,1]\},$ 

is a compact connected subset of  $\mathbb{R}^2$ .

(Hint: start by showing that the map  $x \mapsto (x, f(x))$  is continuous.)

- (2) Let  $(a_n)_{n=1}^{\infty}$  be a sequence of real numbers. Suppose that  $\sum_{n=1}^{\infty} |a_{n+1} a_n|$  converges. Prove that  $(a_n)_{n=1}^{\infty}$  converges.
- (3) Assume  $[-1,1] \xrightarrow{f} \mathbb{R}$  is continuous on [-1,1] and differentiable on  $(-1,0) \cup (0,1)$ . Suppose that  $L := \lim_{x \to 0} f'(x)$  exists and is finite. Prove that f is differentiable at 0 with f'(0) = L.
- (4) Let  $(f_n)_{n=1}^{\infty}$  be a sequence of continuous functions  $[0,1] \xrightarrow{f_n} \mathbb{R}$  that converges uniformly to a function  $f : [0,1] \to \mathbb{R}$ . Let  $(b_n)_{n=1}^{\infty}$  be an increasing sequence of real numbers in (0,1) that converges to 1. Prove that

$$\lim_{n \to \infty} \int_0^{b_n} f_n(x) \, dx = \int_0^1 f(x) \, dx \, .$$

- (5) Let  $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$  be a linear operator satisfying  $T \circ T(\mathbf{x}) = \mathbf{0}$  for all  $\mathbf{x} \in \mathbb{R}^n$ . Show that  $\operatorname{rank}(T) \leq \frac{n}{2}$ .
- (6) Let  $\mathbb{V} \xrightarrow{T} \mathbb{W}$  be a linear transformation between two vector spaces. Prove that T is injective if and only if it has the property that whenever S is a linearly independent subset of  $\mathbb{V}$ , T(S) is a linearly independent subset of  $\mathbb{W}$ .
- (7) Let  $A := \begin{pmatrix} 8 & 2 \\ -8 & -2 \end{pmatrix}$ . Find the entry in the first row and second column of  $A^{2014}$ .
- (8) Suppose  $\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^2$  is differentiable at the origin with  $Df(0,0) = \begin{bmatrix} 0 & 3\\ 3 & 0 \end{bmatrix}$ . Prove that |f(x,y) - f(0,0)| = 2

$$\lim_{(x,y)\to(0,0)}\frac{|f(x,y) - f(0,0)|}{|(x,y)|} = 3$$

Date: April 9, 2014.