MATHEMATICS QUALIFYING EXAM

MAY 3, 2018

Four Hour Time Limit

Notation: \mathbb{R} is the field of real numbers and \mathbb{R}^n is *n*-dimensional Euclidean space. \mathbb{N} is the set of natural numbers (positive integers).

Unless explicitly stated, proofs, or counterexamples, are required for all problems.

- **1.** Suppose $f : \mathbb{R} \to \mathbb{R}$ satisfies $|f(x) f(y)| \le (x y)^2$ for all $x, y \in \mathbb{R}$. Show that f is constant.
- **2.** If

$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \ldots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$$

where C_0, \ldots, C_n are real constants, prove that the equation

 $C_0 + C_1 x + C_2 x^2 + \ldots + C_{n-1} x^{n-1} + C_n x^n = 0$

has at least one real root between 0 and 1. *Hint:* Rolle's theorem.

- **3.** Show that there is no one-one continuous function on (0, 1) for which f((0, 1)) = [0, 2].
- **4.** Let $f_n(x) = \frac{(n-1)x+x^2}{n+x}$ for all $x \ge 1$ and $n \in \mathbb{N}$. Let $f(x) = \lim_{n \to \infty} f_n(x)$ be the pointwise limit on $[1, \infty)$. Does $f_n(x) \to f(x)$ uniformly on $[1, \infty)$?
- 5. Let $\{\vec{v}_k : k \in \mathbb{N}\}$ be a set of non-zero vectors in some real (infinite dimensional) vector space. Suppose that for every $n \in \mathbb{N}$ vector \vec{v}_{n+1} is not in the span of $\{\vec{v}_1, \ldots, \vec{v}_n\}$. Prove that the set $\{\vec{v}_k\}_{k\in\mathbb{N}}$ is linearly independent.
- **6.** Consider a real vector space V of all twice-differentiable functions on \mathbb{R} and its subspace U spanned by four functions $\{\sin x, \cos x, x \sin x, x \cos x\}$. Let $T: U \to V$ be a linear mapping given by T(f) = f'' + f.
 - (a) Determine the image of T.
 - (b) Determine the kernel of T.
- 7. Let A be an $n \times n$ matrix such that $A^3 = A^2 + A I$.
 - (a) Show that A is invertible.
 - (b) Suppose, in addition, that A is diagonalizable. Show that A is its own inverse.
- 8. Let f be the mapping of \mathbb{R}^2 into \mathbb{R}^2 which send the point (x, y) into the point (u, v) given by

$$u = e^x \cos y, \ v = e^x \sin y.$$

Show that f is locally one-one at every point, but f is not one-one on \mathbb{R}^2 .