Cincinnati

Four Hour Time Limit

Notation: \mathbb{R} is the field of real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space. \mathbb{N} is the set of natural numbers (positive integers).
Unless explicitly stated, proofs, or counterexamples, are required for all problems.

1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Show that f is constant.
2. If

$$
C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0
$$

where C_{0}, \ldots, C_{n} are real constants, prove that the equation

$$
C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n-1} x^{n-1}+C_{n} x^{n}=0
$$

has at least one real root between 0 and 1 .
Hint: Rolle's theorem.
3. Show that there is no one-one continuous function on $(0,1)$ for which $f((0,1))=[0,2]$.
4. Let $f_{n}(x)=\frac{(n-1) x+x^{2}}{n+x}$ for all $x \geq 1$ and $n \in \mathbb{N}$. Let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ be the pointwise limit on $[1, \infty)$. Does $f_{n}(x) \rightarrow f(x)$ uniformly on $[1, \infty)$?
5. Let $\left\{\vec{v}_{k}: k \in \mathbb{N}\right\}$ be a set of non-zero vectors in some real (infinite dimensional) vector space. Suppose that for every $n \in \mathbb{N}$ vector \vec{v}_{n+1} is not in the span of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$. Prove that the set $\left\{\vec{v}_{k}\right\}_{k \in \mathbb{N}}$ is linearly independent.
6. Consider a real vector space V of all twice-differentiable functions on \mathbb{R} and its subspace U spanned by four functions $\{\sin x, \cos x, x \sin x, x \cos x\}$. Let $T: U \rightarrow V$ be a linear mapping given by $T(f)=f^{\prime \prime}+f$.
(a) Determine the image of T.
(b) Determine the kernel of T.
7. Let A be an $n \times n$ matrix such that $A^{3}=A^{2}+A-I$.
(a) Show that A is invertible.
(b) Suppose, in addition, that A is diagonalizable. Show that A is its own inverse.
8. Let f be the mapping of \mathbb{R}^{2} into \mathbb{R}^{2} which send the point (x, y) into the point (u, v) given by

$$
u=e^{x} \cos y, v=e^{x} \sin y
$$

Show that f is locally one-one at every point, but f is not one-one on \mathbb{R}^{2}.

