

1. For continuous function $f:[0,1] \rightarrow[0,1]$, must there exist c in that interval for which $f(c)=c$?
2. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)=x$ for x rational and $f(x)=-x$ for x irrational. Prove that f is not Riemann integrable on $[0,1]$.
3. Suppose that $\left\{c_{n}\right\}$ is a sequence of real numbers which converges to $c \in \mathbb{R}$. For $n \in \mathbb{N}$, let

$$
a_{n}=\frac{c_{1}+c_{2}+\cdots+c_{n}}{n} .
$$

Prove that $\left\{a_{n}\right\}$ converges to c. You can use without proof the fact that $\left\{c_{n}\right\}$ is bounded.
4. Let $f_{n}(x)=\frac{x}{1+n x^{2}}$ and $f(x)=0$ for $x \in \mathbb{R}$.
(a) For what values of x is it true that $f_{n}^{\prime}(x) \rightarrow f^{\prime}(x)$?
(b) Show that f_{n} converges uniformly to f on \mathbb{R}.
5. Let V be the real vector space of all continuous functions from \mathbb{R} to \mathbb{R}. Consider three functions f_{1}, f_{2}, f_{3} in V, defined for real x by $f_{1}(x)=\sin (x-\pi / 4), f_{2}(x)=\sin x$, $f_{3}(x)=\sin (x+\pi / 4)$. Is the set $\left\{f_{1}, f_{2}, f_{3}\right\}$ linearly independent?
6. If A is an n by n real symmetric matrix, show that all eigenvalues of A^{2} are nonnegative.
7. Prove the following statement, called the Hamilton-Cayley theorem for 2×2 matrices.

Theorem 1. If A is a 2×2 matrix and $p(\lambda)$ is its characteristic polynomial, then $p(A)=0$.
8. Consider a subset $\mathcal{D}=(-2,2)^{2} \backslash[-1,1]^{2}$ of \mathbb{R}^{2}. Suppose $f: \mathcal{D} \rightarrow \mathbb{R}$ is differentiable with derivative $D f(\mathbf{x})=0$ for all $\mathbf{x} \in \mathcal{D}$. Show that $f(\mathbf{x})=f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$.

