MATHEMATICS QUALIFYING EXAM

AUGUST 20, 2018

Four Hour Time Limit

Notation: \mathbb{R} is the field of real numbers and \mathbb{R}^n is *n*-dimensional Euclidean space. Unless explicitly stated, proofs, or counterexamples, are required for all problems.

- **1.** For continuous function $f : [0, 1] \to [0, 1]$, must there exist c in that interval for which f(c) = c?
- **2.** Define $f : [0,1] \to \mathbb{R}$ by f(x) = x for x rational and f(x) = -x for x irrational. Prove that f is not Riemann integrable on [0,1].
- **3.** Suppose that $\{c_n\}$ is a sequence of real numbers which converges to $c \in \mathbb{R}$. For $n \in \mathbb{N}$, let

$$a_n = \frac{c_1 + c_2 + \dots + c_n}{n}.$$

Prove that $\{a_n\}$ converges to c. You can use without proof the fact that $\{c_n\}$ is bounded.

4. Let $f_n(x) = \frac{x}{1+nx^2}$ and f(x) = 0 for $x \in \mathbb{R}$.

UNIVERSITY O

Cincinnati

- (a) For what values of x is it true that $f'_n(x) \to f'(x)$?
- (b) Show that f_n converges uniformly to f on \mathbb{R} .
- 5. Let V be the real vector space of all continuous functions from \mathbb{R} to \mathbb{R} . Consider three functions f_1, f_2, f_3 in V, defined for real x by $f_1(x) = \sin(x \pi/4), f_2(x) = \sin x, f_3(x) = \sin(x + \pi/4)$. Is the set $\{f_1, f_2, f_3\}$ linearly independent?
- 6. If A is an n by n real symmetric matrix, show that all eigenvalues of A^2 are non-negative.
- 7. Prove the following statement, called the Hamilton–Cayley theorem for 2×2 matrices.
 Theorem 1. If A is a 2×2 matrix and p(λ) is its characteristic polynomial, then p(A) = 0.
- 8. Consider a subset $\mathcal{D} = (-2,2)^2 \setminus [-1,1]^2$ of \mathbb{R}^2 . Suppose $f : \mathcal{D} \to \mathbb{R}$ is differentiable with derivative $Df(\mathbf{x}) = 0$ for all $\mathbf{x} \in \mathcal{D}$. Show that $f(\mathbf{x}) = f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$.