

GRADUATE PROGRAM QUALIFYING EXAM AUGUST 2013

Four Hour Time Limit

 \mathbb{R} is the field of real numbers and \mathbb{R}^n is *n*-dimensional Euclidean space

Proofs, or counter examples, are required for all problems.

- (1) Suppose that $[0,2] \xrightarrow{f} \mathbb{R}$ is a continuous function with f(0) = f(2). Show that there is a real number $a \in [1,2]$ with f(a) = f(a-1).
- (2) (a) State what it means for a function $\mathbb{R}^2 \xrightarrow{f} \mathbb{R}$ to be differentiable at $(a, b) \in \mathbb{R}^2$.
 - (b) Let $\mathbb{R}^2 \xrightarrow{f} \mathbb{R}$ be defined by

$$f(x,y) := \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{if } x, y \in \mathbb{Q} \setminus \{0\}, \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is differentiable at the point $(0,0) \in \mathbb{R}^2$.

- (3) For each n ∈ N, define R → R by f_n(x) := x/n; so, (f_n)₁[∞] is a sequence of functions.
 (a) Prove that (f_n)₁[∞] converges pointwise to zero (the zero function) on R.
 - (a) Prove that $(f_n)_1^{-1}$ converges pointwise to zero (the zero function) (b) Prove that $(f_n)_1^{-1}$ does not converge uniformly to zero on \mathbb{R} .
 - (c) Prove that $(f_n)_1^{\infty}$ does converge uniformly to zero on [0, 1].
- (4) Let $\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^3$ be given by T(x, y, z) := (x + y, y + z, z + x).
 - (a) Show that T is a linear transformation, and compute its matrix representative with respect to the standard basis for \mathbb{R}^3 .
 - (b) Prove that T is a bijection and compute the inverse map T^{-1} .
- (5) Suppose that the vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^n have the properties:

$$\mathbf{v} \cdot \mathbf{v} = 4$$
, $\mathbf{v} \cdot \mathbf{w} = 3$, $\mathbf{w} \cdot \mathbf{w} = 7$.

Find an orthonormal basis (in terms of \mathbf{v} and \mathbf{w}) for $Span\{\mathbf{v}, \mathbf{w}\}$.

- (6) Let A be an $m \times n$ (real) matrix. Show that the following are equivalent:
 - (a) The equation $A\mathbf{x} = 0$ has a unique solution \mathbf{x} in \mathbb{R}^n .
 - (b) The columns of A are linearly independent.
 - (c) The matrix $A^T A$ is invertible.
- (7) Let $\mathcal{C} := \{(x, y) \in \mathbb{R}^2 \mid x^3 + y^3 = 3xy\}$. Let $(a, b) \in \mathcal{C}$ with $(a, b) \neq (0, 0)$. Show that there is an open neighborhood W of (a, b), an open interval $I \subset \mathbb{R}$, and a continuously differentiable map $f : I \to \mathbb{R}$ with the property that either

$$a \in I$$
, $f(a) = b$, and $W \cap \mathcal{C} = \{(x, f(x)) \mid x \in I\}$

or

 $b \in I$, f(b) = a, and $W \cap \mathcal{C} = \{(f(y), y) \mid x \in I\}$.

Determine an equation for the tangent line at the point $(2^{2/3}, 2^{1/3})$. (Hint: use the Implicit Function Theorem.)

Date: August 4, 2013.