GRADUATE PROGRAM QUALIFYING EXAM AUGUST 2013

Four Hour Time Limit

\mathbb{R} is the field of real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space
Proofs, or counter examples, are required for all problems.
(1) Suppose that $[0,2] \xrightarrow{f} \mathbb{R}$ is a continuous function with $f(0)=f(2)$. Show that there is a real number $a \in[1,2]$ with $f(a)=f(a-1)$.
(2) (a) State what it means for a function $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ to be differentiable at $(a, b) \in \mathbb{R}^{2}$.
(b) Let $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}$ be defined by

$$
f(x, y):= \begin{cases}\frac{x y^{3}}{x^{2}+y^{2}} & \text { if } x, y \in \mathbb{Q} \backslash\{0\}, \\ 0 & \text { otherwise }\end{cases}
$$

Prove that f is differentiable at the point $(0,0) \in \mathbb{R}^{2}$.
(3) For each $n \in \mathbb{N}$, define $\mathbb{R} \xrightarrow{f_{n}} \mathbb{R}$ by $f_{n}(x):=x / n$; so, $\left(f_{n}\right)_{1}^{\infty}$ is a sequence of functions.
(a) Prove that $\left(f_{n}\right)_{1}^{\infty}$ converges pointwise to zero (the zero function) on \mathbb{R}.
(b) Prove that $\left(f_{n}\right)_{1}^{\infty}$ does not converge uniformly to zero on \mathbb{R}.
(c) Prove that $\left(\left.f_{n}\right|_{[0,1]}\right)_{1}^{\infty}$ does converge uniformly to zero on $[0,1]$.
(4) Let $\mathbb{R}^{3} \xrightarrow{T} \mathbb{R}^{3}$ be given by $T(x, y, z):=(x+y, y+z, z+x)$.
(a) Show that T is a linear transformation, and compute its matrix representative with respect to the standard basis for \mathbb{R}^{3}.
(b) Prove that T is a bijection and compute the inverse map T^{-1}.
(5) Suppose that the vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} have the properties:

$$
\mathbf{v} \cdot \mathbf{v}=4, \quad \mathbf{v} \cdot \mathbf{w}=3, \quad \mathbf{w} \cdot \mathbf{w}=7
$$

Find an orthonormal basis (in terms of \mathbf{v} and \mathbf{w}) for $\operatorname{Span}\{\mathbf{v}, \mathbf{w}\}$.
(6) Let A be an $m \times n$ (real) matrix. Show that the following are equivalent:
(a) The equation $A \mathbf{x}=0$ has a unique solution \mathbf{x} in \mathbb{R}^{n}.
(b) The columns of A are linearly independent.
(c) The matrix $A^{T} A$ is invertible.
(7) Let $\mathcal{C}:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{3}+y^{3}=3 x y\right\}$. Let $(a, b) \in \mathcal{C}$ with $(a, b) \neq(0,0)$. Show that there is an open neighborhood W of (a, b), an open interval $I \subset \mathbb{R}$, and a continuously differentiable map $f: I \rightarrow \mathbb{R}$ with the property that either

$$
a \in I, \quad f(a)=b, \quad \text { and } \quad W \cap \mathcal{C}=\{(x, f(x)) \mid x \in I\}
$$

or

$$
b \in I, \quad f(b)=a, \quad \text { and } \quad W \cap \mathcal{C}=\{(f(y), y) \mid x \in I\}
$$

Determine an equation for the tangent line at the point $\left(2^{2 / 3}, 2^{1 / 3}\right)$. (Hint: use the Implicit Function Theorem.)

