ANALYSIS PRELIMINARY EXAMINATION, FALL 2017

Real Analysis

In this part of the exam, m, dx, dt denote the Lebesgue measure on \mathbb{R} .

- (1) Let f be a monotone increasing absolutely continuous function on [0, 1]. Prove that for every open set $\mathcal{O} \subset (f(0), f(1))$, the integral $\int_{f^{-1}(\mathcal{O})} f'(x) dx$ exists and $\int_{f^{-1}(\mathcal{O})} f'(x) dx = m(\mathcal{O})$. Hint Notice that f needs not be strictly increasing.
- (2) Let $f \in L^1(\mathbb{R})$ and for every $x \in \mathbb{R}$ let $F(x) = \int_x^{x+1} f(t) dt$.
 - (a) Prove that F is absolutely continuous on every interval [a, b] and in particular F is measurable. (b) Prove that $F \in L^1(\mathbb{R})$. Hint Tonelli.
 - (c) Compute $\int_R F(x) dx$.
- (3) (a) Prove that if $f \ge 0$ is a Riemann integrable function on every interval [0, a] with $0 < a < \infty$ and if the improper Riemann integral $\int_0^\infty f dx$ converges, then $f \in L^1([0,\infty))$ and its Lebesgue integral coincides with the improper Riemann integral. (b) Evaluate $\lim_{n\to\infty} \int_0^\infty \left(1+\frac{x}{n}\right)^n e^{-2x} dx$. Hint $1+y \le e^y$ for every $y \in \mathbb{R}$.
- (4) Let f_n be a sequence of Lebesgue measurable functions on \mathbb{R} converging a.e. to a function f.
 - (a) Assume that $0 \le f_n(x) \le f(x)$ a.e. Does it follow that $\int_{\mathbb{R}} f_n dm \to \int_{\mathbb{R}} f dm$? Either prove or find a counterexample. Does the answer change if we replace the condition that $f_n(x) \ge 0$ a.e., with the condition that f_n is integrable for all n?
 - (b) Assume that $f_n(x) \ge f(x) \ge 0$ a.e. Does it follow that $\int_{\mathbb{R}} f_n dm \to \int_{\mathbb{R}} f dm$? Either prove or find a counterexample. Does the answer change if the integral is over [0,1] rather than \mathbb{R} ?

Complex Analysis

In this part of the exam, $\mathbb C$ denotes the set of all complex numbers, $\mathbb R$ the set of all real numbers, and $\mathbb D$ denotes the unit disk $\{z \in \mathbb{C} : |z| < 1\}$. The unit circle centered at 0 is denoted \mathbb{T} . For complex-valued functions on a planar domain, the term "holomorphic" is the same as "analytic", and means a complex differentiable function.

1. Find a conformal map that maps the planar domain

$$\Omega := \{ z \in \mathbb{C} : |z| > 1 \text{ and } \operatorname{Re}(z) > 0 \}$$

to the unit disk \mathbb{D} .

- 2. For $0 \neq z \in \mathbb{C}$ let $f(z) = e^{1/z}$.
 - (a) For r > 0 let γ_r be the counterclockwise oriented unit circle $\{z \in \mathbb{C} : |z| = r\}$ centered at 0. Show that the function $\varphi: (0,\infty) \to \mathbb{C}$ given by

$$\varphi(r) = \int_{\gamma_r} f(z) \, dz$$

is independent of r.

- (b) Show that $\lim_{z\to\infty} z f(z) = 1$.
- (c) Compute $\varphi(r)$ for r > 0.
- 3. Let Ω be a simply connected planar domain and $f: \Omega \to \mathbb{C}$ be a holomorphic function such that whenever γ is an anticlockwise oriented piecewise smooth loop in Ω we have

$$\int_{\gamma} \frac{f'(w)}{f(w)} \, dw = 0.$$

Show that there is a holomorphic function $g: \Omega \to \mathbb{C}$ such that $e^{g(z)} = f(z)$ for each $z \in \Omega$. Hint: Fix a point $z_0 \in \Omega$ and consider the function $g: \Omega \to \mathbb{C}$ given by $g(z) = \int_{\gamma_z} \frac{f'(w)}{f(w)} dw$, where γ_z is any choice of a piecewise smooth curve in Ω with starting point z_0 and end point z. If you use this hint, you should also explain why this function g is independent of the choice of γ_z .

- 4. Let $f: \mathbb{C} \to \mathbb{C}$ be holomorphic, and suppose that $f(\mathbb{T}) \subset \mathbb{R}$.
 - (a) Show that f(0) is a real number.
 - (b) Show that for each $z \in \mathbb{D}$ we must have $f(z) \in \mathbb{R}$.
 - (c) Show that f must be a constant function.