ANALYSIS PRELIMINARY EXAMINATION, FALL 2018

REAL ANALYSIS

In this part of the exam, m, dx, and dt denote Lebesgue measure on \mathbb{R} .

1. (a) Given two measures μ and ν on a σ -algebra \mathcal{M} on a space X, define the notion $\mu \ll \nu$ (μ is absolutely continuous with respect to ν) and state the Radon-Nikodym theorem without proof.

(b) Does there exists a *finite* measure μ on the Lebesgue σ -algebra on \mathbb{R} for which $\mu \ll m$ and also $m \ll \mu$? Either find such a measure or prove why that is impossible.

2. (a) Define the Lebesgue outer measure m^* on \mathbb{R} .

(b) Let $A \subset \mathbb{R}$ and assume that $m^*(A \cap (a, b)) \leq \frac{b-a}{2}$ for any $a, b \in \mathbb{R}$, a < b. Prove that A is Lebesgue measurable and m(A) = 0.

3. Let f be a Lebesgue integrable function on [0, 2] and for every $n \in \mathbb{N}$ and $x \in [0, 1]$ define $f_n(x) := n \int_x^{x+\frac{1}{n}} f(t) dt$. Prove that $\int_0^1 |f_n(x) - f(x)| dt \to 0$ for $n \to \infty$. Hint: prove first the property for the case when f is continuous.

4. A Lipschitz function φ on a set $A \subset \mathbb{R}$ is a function such that there is a constant L > 0 for which $|\varphi(x) - \varphi(y)| \leq L|x - y|$ for all $x, y \in A$.

(a) Prove that every continuous piecewise linear function on [0, 1] is Lipschitz.

(b) Suppose that $f : [0,1] \to \mathbb{R}$ is an integrable function such that for every Lipschitz function φ on [0,1] with $\varphi(0) = 0 = \varphi(1)$ we have $\int_0^1 f(x)\varphi(x)dx = 0$. Prove that f = 0 almost everywhere on [0,1]. Hint: recall that if g is integrable, then for every $\epsilon > 0$ there is a $\delta > 0$ such that if E is a measurable set and $m(E) < \delta$ then $\int_E |g| dm < \epsilon$.

COMPLEX ANALYSIS

In this part of the exam, \mathbb{C} denotes the collection of all complex numbers.

1. In this question, Ω denotes a non-empty open subset of \mathbb{C} , and $f : \Omega \to \mathbb{C}$ has continuous first order partial derivatives in Ω . Let $a \in \Omega$.

(a) State a connection between f being complex differentiable at a and its first order partial derivatives satisfying the Cauchy-Riemann equations at a.

(b) Suppose that f is holomorphic in Ω , and let $g : \Omega \to \mathbb{C}$ be given by g(z) = f(z). Prove that g is complex differentiable at a if and only if f'(a) = 0.

2. Evaluate $\int_0^\infty \frac{1}{(1+x^2)^2} dx$ using the method of residues. Give justification for each of your steps in the solution.

3. (a) Let f be a holomorphic function on a non-empty open connected subset of \mathbb{C} . Prove that f is constant if |f| is constant.

(b) Let u be a non-constant real-valued function on \mathbb{C} that has continuous first partial derivatives in \mathbb{C} . Show that the function f given by $f(z) = \frac{u(z)-1-i}{u(z)-1+i}$ is not entire.

4. Find a conformal mapping of the plane that maps the real axis \mathbb{R} to the unit circle centered at 0 and the imaginary axis $i\mathbb{R}$ to itself, and find the image of the unit circle centered at 0 under this map.