REAL & COMPLEX ANALYSIS PRELIMINARY EXAMINATION AUGUST 2016, MATHEMATICS, UNIVERSITY OF CINCINNATI

Part 1. Real analysis

- (1) Prove that for each $0 < \varepsilon < 1$, there exists a closed set $A \subset [0, 1]$ with empty interior but Lebesgue measure greater than ε .
- (2) Let $f : \mathbb{R} \to \mathbb{R}$ be an integrable function. Show that if $\int_a^b f(x) dx = 0$ for all rational numbers a < b, then f(x) = 0 a.e. Hint: First prove $\int_A f = 0$ for A an open set, then for A measurable.
- (3) Suppose (X, A, μ) is a measure space and f: X → R is measurable.
 (a) Show (f*μ)(A) := μ(f⁻¹(A)) defines a measure on the σ-algebra of Borel subsets of R.
 (b) Show that ∫_R g d(f*μ) = ∫_X g ∘ f dμ for every Borel function g: R → [0, ∞].
- (4) (a) State without proof the dominated convergence theorem.
 (b) Define f_n: (0,∞) → ℝ by f_n(x) = 1/(x^{3/2} sin(x/n)). Compute the limit lim_{n→∞} ∫₀[∞] f_n(x) dx. You must fully justify your argument. Hint: for small t the bound |sin(t)| ≤ t may be useful.

Part 2. Complex Analysis

- (1) Evaluate $\int_{\infty}^{\infty} \frac{1}{x^6+1} dx$.
- (2) Determine $z \in \mathbb{C}$, r > 0 so that $0, 1, 2 + i \in \partial B_r(z)$.
- (3) State and prove the Cauchy integral formula.
- (4) The fundamental theorem of algebra states that any polynomial

$$p(z) := a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0, \quad a_n \neq 0$$

has exactly n complex zeros, counting multiplicities. Prove this by comparing two appropriate polynomials using Rouché's theorem.