REAL \& COMPLEX ANALYSIS PRELIMINARY EXAMINATION AUGUST 2016, MATHEMATICS, UNIVERSITY OF CINCINNATI

Part 1. Real analysis

(1) Prove that for each $0<\varepsilon<1$, there exists a closed set $A \subset[0,1]$ with empty interior but Lebesgue measure greater than ε.
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an integrable function.

Show that if $\int_{a}^{b} f(x) d x=0$ for all rational numbers $a<b$, then $f(x)=0$ a.e.
Hint: First prove $\int_{A} f=0$ for A an open set, then for A measurable.
(3) Suppose (X, \mathcal{A}, μ) is a measure space and $f: X \rightarrow \mathbb{R}$ is measurable.
(a) Show $\left(f_{*} \mu\right)(A):=\mu\left(f^{-1}(A)\right)$ defines a measure on the σ-algebra of Borel subsets of \mathbb{R}.
(b) Show that $\int_{\mathbb{R}} g \mathrm{~d}\left(f_{*} \mu\right)=\int_{X} g \circ f \mathrm{~d} \mu$ for every Borel function $g: \mathbb{R} \rightarrow[0, \infty]$.
(4) (a) State without proof the dominated convergence theorem.
(b) Define $f_{n}:(0, \infty) \rightarrow \mathbb{R}$ by $f_{n}(x)=\frac{1}{x^{3 / 2}} \sin \left(\frac{x}{n}\right)$. Compute the limit $\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) \mathrm{d} x$. You must fully justify your argument.
Hint: for small t the bound $|\sin (t)| \leq t$ may be useful.

Part 2. Complex Analysis

(1) Evaluate $\int_{\infty}^{\infty} \frac{1}{x^{6}+1} d x$.
(2) Determine $z \in \mathbb{C}, r>0$ so that $0,1,2+i \in \partial B_{r}(z)$.
(3) State and prove the Cauchy integral formula.
(4) The fundamental theorem of algebra states that any polynomial

$$
p(z):=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}, \quad a_{n} \neq 0
$$

has exactly n complex zeros, counting multiplicities.
Prove this by comparing two appropriate polynomials using Rouché's theorem.

