# Sample Questions for the PhD Preliminary Exam in Analysis 

Department of Mathematical Sciences<br>University of Cincinnati<br>February 2013

## Real Analysis

1. Let $f$ be a real-valued function on $\mathbb{R}$. Show that the set of points where $f$ is continuous is a $G_{\delta}$ set.
2. Let $f$ be a non-negative integrable function on a measure space $(X, \mathcal{M}, \mu)$. Suppose that, for every $n \in \mathbb{N}$,

$$
\int_{X}[f]^{n} d \mu=\int_{X} f d \mu
$$

Show that $f=\chi_{E}$ a.e. on $X$, where $E$ is a measurable subset of $X$.
3. Let $f$ be absolutely continuous and strictly increasing on $[a, b]$. Show that for every open subset $\mathcal{O}$ of $(a, b)$,

$$
m(f(\mathcal{O}))=\int_{\mathcal{O}} f^{\prime}
$$

4. Let $f$ be a real-valued function that is integrable on $\mathbb{R}$ and let $\varepsilon>0$. Show that there is a continuous function $g$ that is identically zero outside some interval and such that

$$
\int_{\mathbb{R}}|f-g|<\varepsilon
$$

(Hint: Lusin's theorem.)
5. Let $(X, \mathcal{M}, \mu)$ be a $\sigma$-finite measure space and $f$ a measurable real-valued function on $X$. Prove that

$$
\int_{X} f^{2} d \mu=2 \int_{0}^{\infty} s \mu(\{x \in X:|f(x)|>s\}) d s
$$

## Complex Analysis

1. Let $\log (z)$ denote the principal branch of the logarithm function.
(a) Show that in general $\log (a b) \neq \log (a)+\log (b)$.
(b) For a given $a \in \mathbb{C} \backslash\{0\}$, determine the set of all $z$ for which

$$
\log (a z)=\log (a)+\log (z)
$$

2. State and derive the Cauchy-Riemann equations.
3. Evaluate

$$
\int_{|z|=1}\left(z^{2}+2 z\right) \csc (z)^{2} d z
$$

4. Let $f(z)=z^{2}$.
(a) Calculate $\int_{0}^{2 \pi} f\left(2+e^{i \theta}\right) d \theta$ and confirm it is non-zero.
(b) Does Cauchy's theorem give $\int_{|z-2|=1} f(z) d z=0$ ?

Explain the seeming discrepency with (a).
5. Let $f(z)=u(z)+i v(z)$ be an entire function satisfying $u(z) \leq 0$ for all $z \in \mathbb{C}$.
Show that $f(z)$ is constant.
Hint: Consider $g(z)=e^{f(z)}$.
6. (a) Find the general form of any Mobius transformation which maps the unit disk D onto the upper half-plane.
(b) What changes if we add the requirement that the origin should be mapped to i?
7. Show that $f(z)=z^{4}-3 z^{2}+3$ has exactly one zero in the open first quadrant
$Q_{1}=\{z: \Re(z)>0, \Im(z)>0\}$.
Hint: Use the Argument Principle.
8. Let $R$ be a rational function. State and prove necessary and sufficient conditions for there to be a holomorphic branch of the logarithm of $R$ in some domain $\Omega$.

