REAL & COMPLEX ANALYSIS PRELIMINARY EXAMINATION, SPRING 2013, MATHEMATICS, UNIVERSITY OF CINCINNATI

Real Analysis

- (1) Let f be an absolutely continuous function on an interval I and let $E \subset I$ be such that m(E) = 0. Show that m(f(E)) = 0.
- (2) Let μ be a measure on the measurable space $(\mathbb{R}, \mathcal{L})$, where \mathcal{L} is the σ -algebra of Lebesgue measurable subsets of \mathbb{R} . Assume that there exists $K \geq 0$ such that

$$\int_{\mathbb{R}} e^{nx} d\mu(x) \le K, \quad n = 1, 2, 3, \dots$$

Prove that $\mu((0,\infty)) = 0$.

(3) Let $\{f_n\}$ be a sequence of non-negative Lebesgue measurable functions on \mathbb{R} that converges pointwise to a function f that is Lebesgue integrable on \mathbb{R} .

Show that if
$$\int_{\mathbb{R}} f = \lim_{n \to \infty} \int_{\mathbb{R}} f_n$$
, then $\int_E f = \lim_{n \to \infty} \int_E f_n$,

for any Lebesgue measurable set E.

(4) Let μ be a σ -finite measure on the measurable space ([0, 1], \mathcal{M}), where \mathcal{M} is the σ -algebra of Lebesgue measurable subsets of [0, 1]. For $x \in [0, 1]$, define

$$F(x) = \mu([0, x]).$$

Show that μ is an absolutely continuous measure with respect to the Lebesgue measure m on [0,1] if and only if F is an absolutely continuous function on [0,1] satisfying F(0) = 0.

Complex Analysis

(1) (a) Suppose $\Omega \subset \mathbb{R}^2$ is a connected and open domain. Let $f_n : \Omega \to \mathbb{R}$ be a sequence of harmonic functions that converge uniformly to f. Prove that f satisfies the mean value property and hence is harmonic.

(b) Use part (a) to prove that not every continuus function on a domain in \mathbb{C} is the uniform limit of a sequence of complex polynomials.

- (2) Suppose f = u + iv is analytic in a domain D and $v(z) = [u(z)]^2$ for all $z \in D$. Show that f is constant in D.
- (3) The fractional linear transformation F satisfies F(0) = -1, $F(2i) = \frac{1}{3}$, and $F(4i) = \frac{3}{5}$. Determine the image of the following sets of points under the function F.
 - (a) The horizontal line $i + t, t \in \mathbb{R}$.
 - (b) The circle of radius 1 centered at 1.
- (4) Characterize the set of functions $g : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ that are bounded away from 0 with $g(z) > |z|^{-\frac{7}{3}}$ for all $z \in \mathbb{C} \setminus \{0\}$.