REAL \& COMPLEX ANALYSIS PRELIMINARY EXAMINATION, SPRING 2013, MATHEMATICS, UNIVERSITY OF CINCINNATI

Real Analysis

(1) Let f be an absolutely continuous function on an interval I and let $E \subset I$ be such that $m(E)=0$. Show that $m(f(E))=0$.
(2) Let μ be a measure on the measurable space $(\mathbb{R}, \mathcal{L})$, where \mathcal{L} is the σ-algebra of Lebesgue measurable subsets of \mathbb{R}. Assume that there exists $K \geq 0$ such that

$$
\int_{\mathbb{R}} e^{n x} d \mu(x) \leq K, \quad n=1,2,3, \ldots
$$

Prove that $\mu((0, \infty))=0$.
(3) Let $\left\{f_{n}\right\}$ be a sequence of non-negative Lebesgue measurable functions on \mathbb{R} that converges pointwise to a function f that is Lebesgue integrable on \mathbb{R}.

$$
\text { Show that if } \int_{\mathbb{R}} f=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}, \quad \text { then } \int_{E} f=\lim _{n \rightarrow \infty} \int_{E} f_{n},
$$

for any Lebesgue measurable set E.
(4) Let μ be a σ-finite measure on the measurable space $([0,1], \mathcal{M})$, where \mathcal{M} is the σ-algebra of Lebesgue measurable subsets of $[0,1]$. For $x \in[0,1]$, define

$$
F(x)=\mu([0, x]) .
$$

Show that μ is an absolutely continuous measure with respect to the Lebesgue measure m on [0,1] if and only if F is an absolutely continuous function on [0,1] satisfying $F(0)=0$.

Complex Analysis

(1) (a) Suppose $\Omega \subset \mathbb{R}^{2}$ is a connected and open domain. Let $f_{n}: \Omega \rightarrow \mathbb{R}$ be a sequence of harmonic functions that converge uniformly to f. Prove that f satisfies the mean value property and hence is harmonic.
(b) Use part (a) to prove that not every continous function on a domain in \mathbb{C} is the uniform limit of a sequence of complex polynomials.
(2) Suppose $f=u+i v$ is analytic in a domain D and $v(z)=[u(z)]^{2}$ for all $z \in D$. Show that f is constant in D.
(3) The fractional linear transformation F satisfies $F(0)=-1, F(2 i)=\frac{1}{3}$, and $F(4 i)=\frac{3}{5}$. Determine the image of the following sets of points under the function F.
(a) The horizontal line $i+t, t \in \mathbb{R}$.
(b) The circle of radius 1 centered at 1 .
(4) Characterize the set of functions $g: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ that are bounded away from 0 with $g(z)>|z|^{-\frac{7}{3}}$ for all $z \in \mathbb{C} \backslash\{0\}$.

